[1]

Fiorini CF, de Camargo Smidt E, Knowles LL, Leite Borba E. 2023. Hybridization boosters diversification in a Neotropical Bulbophyllum (Orchidaceae) group. Molecular Phylogenetics and Evolution 186:107858

doi: 10.1016/j.ympev.2023.107858
[2]

Zhou Y, Li WW, Zhang YQ, Xing XC, Zhang JQ, et al. 2020. Extensive reticulate evolution within Fargesia (sl) (Bambusoideae: Poaceae) and its allies: Evidence from multiple nuclear markers. Molecular Phylogenetics and Evolution 149:106842

doi: 10.1016/j.ympev.2020.106842
[3]

Hamston TJ, de Vere N, King RA, Pellicer J, Fay MF, et al. 2018. Apomixis and hybridization drives reticulate evolution and phyletic differentiation in Sorbus L.: implications for conservation. Frontiers in Plant Science 9:1796

doi: 10.3389/fpls.2018.01796
[4]

Dar JA, Beigh ZA, Wani AA. 2017. Polyploidy: Evolution and crop improvement. Chromosome structure and aberrations, eds. Bhat T, Wani A. pp. 201−18. doi: 10.1007/978-81-322-3673-3_10

[5]

Mitchell N, Campbell LG, Ahern JR, Paine KC, Giroldo AB, et al. 2019. Correlates of hybridization in plants. Evolution Letters 3(6):570−85

doi: 10.1002/evl3.146
[6]

Whitney KD, Ahern JR, Campbell LG, Albert LP, King MS. 2010. Patterns of hybridization in plants. Perspectives in Plant Ecology, Evolution and Systematics 12(3):175−82

doi: 10.1016/j.ppees.2010.02.002
[7]

Yi H, Dong S, Yang L, Wang J, Kidner C, et al. 2023. Genome-wide data reveal cryptic diversity and hybridization in a group of tree ferns. Molecular Phylogenetics and Evolution 184:107801

doi: 10.1016/j.ympev.2023.107801
[8]

Zhang HJ, Zhang X, Landis JB, Sun YX, Sun J, et al. 2022. Phylogenomic and comparative analyses of Rheum (Polygonaceae, Polygonoideae). Journal of Systematics and Evolution 60:1229−40

doi: 10.1111/jse.12814
[9]

Guo YY, Luo YB, Liu ZJ, Wang XQ. 2015. Reticulate evolution and sea-level fluctuations together drove species diversification of slipper orchids (Paphiopedilum) in South-East Asia. Molecular Ecology 24:2838−55

doi: 10.1111/mec.13189
[10]

Zhang L, Morales-Briones DF, Li Y, Zhang G, Zhang T, et al. 2023. Phylogenomics insights into gene evolution, rapid species diversification, and morphological innovation of the apple tribe (Maleae, Rosaceae). New Phytologist 240(5):2102−20

doi: 10.1111/nph.19175
[11]

Broz AK, Bedinger PA. 2021. Pollen–pistil interactions as reproductive barriers. Annual Review of Plant Biology 72:615−39

doi: 10.1146/annurev-arplant-080620-102159
[12]

Li YX, Li ZH, Schuiteman A, Chase MW, Li JW, et al. 2019. Phylogenomics of Orchidaceae based on plastid and mitochondrial genomes. Molecular Phylogenetics and Evolution 139:106540

doi: 10.1016/j.ympev.2019.106540
[13]

Niu SC, Huang J, Xu Q, Li PX, Yang HJ, et al. 2018. Morphological type identification of self-incompatibility in Dendrobium and its phylogenetic evolution pattern. International Journal of Molecular Sciences 19(9):2595

doi: 10.3390/ijms19092595
[14]

Zhang X, Jia Y, Liu Y, Chen D, Luo Y, et al. 2021. Challenges and perspectives in the study of self-incompatibility in orchids. International Journal of Molecular Sciences 22(23):12901

doi: 10.3390/ijms222312901
[15]

Wang MT, Hou ZY, Li C, Yang JP, Niu ZT, et al. 2023. Rapid structural evolution of Dendrobium mitogenomes and mito-nuclear phylogeny discordances in Dendrobium (Orchidaceae). Journal of Systematics and Evolution 61(5):790−805

doi: 10.1111/jse.12912
[16]

Johansen B. 1990. Incompatibility in Dendrobium (Orchidaceae). Botanical Journal of the Linnean Society 103:165−96

doi: 10.1111/j.1095-8339.1990.tb00183.x
[17]

Pinheiro F, Cafasso D, Cozzolino S, Scopece G. 2015. Transitions between self-compatibility and self-incompatibility and the evolution of reproductive isolation in the large and diverse tropical genus Dendrobium (Orchidaceae). Annals of Botany 116(3):457−67

doi: 10.1093/aob/mcv057
[18]

Katoh K, Rozewicki J, Yamada KD. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20:1160−66

doi: 10.1093/bib/bbx108
[19]

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59(3):307−21

doi: 10.1093/sysbio/syq010
[20]

Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754−55

doi: 10.1093/bioinformatics/17.8.754
[21]

Huang J. 2016. Mating compatibility of Dendrobium. Masteral dissertation (in Chinese). South China Agricultural University, China

[22]

Zhang GQ, Chen GZ, Chen LJ, Zhai JW, Huang J, et al. 2021. Phylogenetic incongruence in Cymbidium orchids. Plant diversity 43(6):452−61

doi: 10.1016/j.pld.2021.08.002
[23]

Kloepper TH and Huson DH. 2008. Drawing explicit phylogenetic networks and their integration into SplitsTree. BMC Evolutionary Biology 8:22−73

doi: 10.1186/1471-2148-8-22
[24]

Wilfret GJ. 1968. Genome and karyotype relationships in the genus Dendrobium (Orchidaceae). Thesis. University of Hawai'I at Manoa, USA

[25]

Pan CX, Bai Y, Bao YH, Fan ML. 2010. Preliminary report on sexual hybridization breeding of medicinal Dendrobium species. Shizhen Traditional Chinese Medicine 21(5):1214−15 (in Chinese)

doi: 10.3969/j.issn.1008-0805.2010.05.091
[26]

Li YQ, Ye W, Jiang JL, Lei FG. 2015. Study on artificial pollination fruiting of Dendrobium. Fujian Agricultural Journal 30(8):779−83 (in Chinese)

doi: 10.13989/j.cnki.0517-6611.2015.33.062
[27]

Ren Y. 2013. Germplasm resources evaluation, innovation and genetic map construction of Dendrobium. Thesis (in Chinese). Hainan University, China

[28]

Xu Q. 2015. Phylogeny of Dendrobium and analysis of NBS gene in Dendrobium officinale. Thesis (in Chinese). University of Chinese Academy of Sciences, China

[29]

Aguiar B, Vieira J, Cunha AE, Vieira CP. 2015. No evidence for Fabaceae gametophytic self-incompatibility being determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase lineage genes. BMC Plant Biology 15:1−22

doi: 10.1186/s12870-014-0410-4
[30]

Fujii S, Kubo KI, Takayama S. 2016. Non-self-and self-recognition models in plant self-incompatibility. Nature Plants 2(9):16130

doi: 10.1038/nplants.2016.130
[31]

Murase K, Moriwaki Y, Mori T, Liu X, Masaka C, et al. 2020. Mechanism of self/nonself-discrimination in Brassica self-incompatibility. Nature Communications 11(1):4916

doi: 10.1038/s41467-020-18698-w
[32]

Goring DR, Bosch M, Franklin-Tong VE. 2023. Contrasting self-recognition rejection systems for self-incompatibility in Brassica and Papaver. Current Biology 33(11):R530−R542

doi: 10.1016/j.cub.2023.03.037
[33]

Huang J, Yang L, Yang L, Wu X, Cui X, et al. 2023. Stigma receptors control intraspecies and interspecies barriers in Brassicaceae. Nature 614:303−8

doi: 10.1038/s41586-022-05640-x
[34]

Zhang G, Hu Y, Huang MZ, Huang WC, Liu DK, et al. 2023. Comprehensive phylogenetic analyses of Orchidaceae using nuclear genes and evolutionary insights into epiphytism. Journal of Integrative Plant Biology 65(5):1204−25

doi: 10.1111/jipb.13462
[35]

Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, et al. 2015. An updated classification of Orchidaceae. Botanical Journal of the Linnean Society 177(2):151−74

doi: 10.1111/boj.12234
[36]

Leite Borba E, Barbosa AR, Cabral de Melo M, Loureiro Gontijo S, Ornellas de Oliveira H. 2011. Mating systems in the Pleurothallidinae (Orchidaceae): Evolutionary and systematic implications. Lankesteriana International Journal on Orchidology 11:207−21

doi: 10.15517/lank.v11i3.18275
[37]

East EM. 1940. The distribution of self-sterility in the flowering plants. Proceedings of the American Philosophical Society 82:449−518

[38]

Castro JB, Singer RB. 2019. A literature review of the pollination strategies and breeding systems in Oncidiinae orchids. Acta Botanica Brasilica 33:618−43

doi: 10.1590/0102-33062019abb0111
[39]

Oh GS, Chung MY, Chung SG. 2001. Contrasting breeding systems: Liparis Kumokiri and L. Makinoana (Orchidaceae). Annales Botanici Fennici 38(4):281−84

[40]

Whigham DF, O'Neill JP. 1991. Dynamics of flowering and fruit production in two eastern North American terrestrial orchids, Tipularia discolor and Liparis lilifolia. In Population Ecology of Terrestrial Orchids, eds. Wells TCE, Willems JH. The Hague, The Netherlands: SPB Academic Publishers. pp. 89–101

[41]

Ackerman JD. 1989. Limitations to sexual reproduction in Encyclia krugii (Orchidaceae). Systematic Botany 14:101−9

doi: 10.2307/2419054
[42]

Agnew JD. 1986. Self-compatibility/incompatibility in some orchids of the subfamily Vandoideae. Plant Breeding 97:183−86

doi: 10.1111/j.1439-0523.1986.tb01049.x
[43]

Ellstrand NC, Whitkus R, Rieseberg LH. 1996. Distribution of spontaneous plant hybrids. Proceedings of the National Academy of Sciences of the United States of America 93:5090−93

doi: 10.1073/pnas.93.10.5090
[44]

Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, et al. 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of the Royal Society B: Biological Sciences 282:20151553

doi: 10.1098/rspb.2015.1553