[1]

Osakabe Y, Sugano SS, Osakabe K. 2016. Genome engineering of woody plants: past, present and future. Journal of Wood Science 62:217−25

doi: 10.1007/s10086-016-1548-5
[2]

Duan H, Maren NA, Ranney TG, Liu W. 2022. New opportunities for using WUS/BBM and GRF-GIF genes to enhance genetic transformation of ornamental plants. Ornamental Plant Research 2:4

doi: 10.48130/opr-2022-0004
[3]

Bhattacharjee S, Bhowmick R, Kant L, Paul K. 2023. Strategic transgene-free approaches of CRISPR-based genome editing in plants. Molecular Genetics and Genomics 298:507−20

doi: 10.1007/s00438-023-01998-3
[4]

Hao S, Zhang Y, Li R, Qu P, Cheng C. 2024. Agrobacterium-mediated in planta transformation of horticultural plants: current status and future prospects. Scientia Horticulturae. 325:112693

doi: 10.1016/j.scienta.2023.112693
[5]

Ying W, Wen G, Xu W, Liu H, Ding W, et al. 2023. Agrobacterium rhizogenes: paving the road to research and breeding for woody plants. Frontiers in Plant Science 14:1196561

doi: 10.3389/fpls.2023.1196561
[6]

Bahramnejad B, Naji M, Bose R, Jha S. 2019. A critical review on use of Agrobacterium rhizogenes and their associated binary vectors for plant transformation. Biotechnology Advances 37(7):107405

doi: 10.1016/j.biotechadv.2019.06.004
[7]

Mankin SL, Hill DS, Olhoft PM, Toren E, Wenck AR, et al. 2007. Disarming and sequencing of Agrobacterium rhizogenes strain K599 (NCPPB2659) plasmid pRi2659. In Vitro Celular & Developmental Biology - Plant 43:521−35

doi: 10.1007/s11627-007-9071-4
[8]

Desmet S, Dhooghe E, De Keyser E, Van Huylenbroeck J, Müller R, et al. 2020. Rhizogenic agrobacteria as an innovative tool for plant breeding: current achievements and limitations. Applied Microbiology and Biotechnology 104(6):2435−2451

doi: 10.1007/s00253-020-10403-7
[9]

Liu L, Qu J, Wang C, Liu M, Zhang C, et al. 2024. An efficient genetic transformation system mediated by Rhizobium rhizogenes in fruit trees based on the transgenic hairy root to shoot conversion. Plant Biotechnology Journal 22(8):2093−103

doi: 10.1111/pbi.14328
[10]

Cao X, Xie H, Song M, Lu J, Ma P, et al. 2023. Cut-dip-budding delivery system enables genetic modifications in plants without tissue culture. The Innovation 4(1):100345

doi: 10.1016/j.xinn.2022.100345
[11]

Yoo SC, Chen C, Rojas M, Daimon Y, Ham BK, et al. 2013. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex. The Plant Journal 75(3):456−68

doi: 10.1111/tpj.12213
[12]

Song G, Walworth AE, Loescher WH. 2015. Grafting of genetically engineered plants. Journal of the American Society for Horticultural Science 140(3):203−13

doi: 10.21273/JASHS.140.3.203
[13]

Yu Z, Chen W, Wang Y, Zhang P, Shi N, et al. 2021. Mobile Flowering Locus T RNA - biological relevance and biotechnological potential. Frontiers in Plant Science 12:792192

doi: 10.3389/fpls.2021.792192
[14]

Zhang X, Kang L, Zhang Q, Meng Q, Pan Y, et al. 2020. An RNAi suppressor activates in planta virus–mediated gene editing. Functional & Integrative Genomics 20(4):471−77

doi: 10.1007/s10142-019-00730-y
[15]

Zhang W, Thieme CJ, Kollwig G, Apelt F, Yang L, et al. 2016. tRNA-related sequences trigger systemic mRNA transport in plants. The Plant Cell 28(6):1237−49

doi: 10.1105/tpc.15.01056
[16]

Yang L, Machin F, Wang S, Saplaoura E, Kragler F. 2023. Heritable transgene-free genome editing in plants by grafting of wild-type shoots to transgenic donor rootstocks. Nature Biotechnology 41(7):958−67

doi: 10.1038/s41587-022-01585-8
[17]

Li F, Kawato N, Sato H, Kawaharada Y, Henmi M, et al. 2023. Release of chimeras and efficient selection of editing mutants by CRISPR/Cas9-mediated gene editing in apple. Scientia Horticulturae 316:112011

doi: 10.1016/j.scienta.2023.112011
[18]

Wang Y, Yang X, Wang W, Wang Y, Chen X, et al. 2025. Efficient genetic transformation and gene editing of Chinese cabbage using Agrobacterium rhizogenes. Plant Physiology 15:kiae543

doi: 10.1093/plphys/kiae543
[19]

Bernard G, Gagneul D, Alves Dos Santos H, Etienne A, Hilbert JL, et al. 2019. Efficient genome editing using CRISPR/Cas9 technology in chicory. International Journal of Molecular Sciences 20(5):1155

doi: 10.3390/ijms20051155
[20]

Ma H, Meng X, Xu K, Li M, Gmitter FG Jr, et al. 2022. Highly efficient hairy root genetic transformation and applications in Citrus. Frontiers in Plant Science 13:1039094

doi: 10.3389/fpls.2022.1039094
[21]

Wang M, Qin YY, Wei NN, Xue HY, Dai WS. 2023. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in Citrus seeds and its application in gene functional analysis. Frontiers in Plant Science 14:1293374

doi: 10.3389/fpls.2023.1293374
[22]

Ramasamy M, Dominguez MM, Irigoyen S, Padilla CS, Mandadi KK. 2023. Rhizobium rhizogenes-mediated hairy root induction and plant regeneration for bioengineering Citrus. Plant Biotechnology Journal 21:1728−30

doi: 10.1111/pbi.14096
[23]

Zhou L, Wang Y, Wang P, Wang C, Wang J, et al. 2022. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene editing analysis in cotton. Frontiers in Plant Science 13:1059404

doi: 10.3389/fpls.2022.1059404
[24]

Li P, Zhang Y, Liang J, Hu X, He Y, et al. 2024. Agrobacterium rhizogenes-mediated marker-free transformation and gene editing system revealed that AeCBL3 mediates the formation of calcium oxalate crystal in kiwifruit. Molecular Horticulture 4(1):1

doi: 10.1186/s43897-023-00077-w
[25]

Güngör B, Biró JB, Domonkos Á, Horváth B, Kaló P. 2023. Targeted mutagenesis of Medicago truncatula Nodule-specific Cysteine-Rich (NCR) genes using the Agrobacterium rhizogenes-mediated CRISPR/Cas9 system. Scientific Reports 13:20676

doi: 10.1038/s41598-023-47608-5
[26]

Triozzi PM, Schmidt HW, Dervinis C, Kirst M, Conde D. 2021. Simple, efficient and open-source CRISPR/Cas9 strategy for multi-site genome editing in Populus tremula × alba. Tree Physiology 41(11):2216−27

doi: 10.1093/treephys/tpab066
[27]

Butler NM, Jansky SH, Jiang J. 2020. First-generation genome editing in potato using hairy root transformation. Plant Biotechnology Journal 18(11):2201−09

doi: 10.1111/pbi.13376
[28]

Li JW, Zeng T, Xu ZZ, Li JJ, Hu H, et al. 2022. Ribozyme-mediated CRISPR/Cas9 gene editing in pyrethrum (Tanacetum cinerariifolium) hairy roots using a RNA polymerase II-dependent promoter. Plant Methods 18(1):32

doi: 10.1186/s13007-022-00863-5
[29]

Yi X, Wang C, Yuan X, Zhang M, Zhang C, et al. 2024. Exploring an economic and highly efficient genetic transformation and genome-editing system for radish through developmental regulators and visible reporter. The Plant Journal 120(4):1682−92

doi: 10.1111/tpj.17068
[30]

Li B, Cui G, Shen G, Zhan Z, Huang L, et al. 2017. Targeted mutagenesis in the medicinal plant Salvia miltiorrhiza. Scientific Reports 7:43320

doi: 10.1038/srep43320
[31]

Huang P, Lu M, Li X, Sun H, Cheng Z, et al. 2022. An efficient Agrobacterium rhizogenes-mediated hairy root transformation method in a soybean root biology study. International Journal of Molecular Sciences 23(20):12261

doi: 10.3390/ijms232012261
[32]

Trinh DD, Le NT, Bui TP, Le TNT, Nguyen CX, et al. 2022. A sequential transformation method for validating soybean genome editing by CRISPR/Cas9 system. Saudi Journal of Biological Sciences 29(10):103420

doi: 10.1016/j.sjbs.2022.103420
[33]

Nguyen CX, Dohnalkova A, Hancock CN, Kirk KR, Stacey G, et al. 2023. Critical role for uricase and xanthine dehydrogenase in soybean nitrogen fixation and nodule development. The Plant Genome 16(2):e20171

doi: 10.1002/tpg2.20172
[34]

Cheng Y, Wang X, Cao L, Ji J, Liu T, et al. 2021. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation for gene functional and gene editing analysis in soybean. Plant Methods 17(1):73

doi: 10.1186/s13007-021-00778-7
[35]

Cheng Q, Dong L, Su T, Li T, Gan Z, et al. 2019. CRISPR/Cas9-mediated targeted mutagenesis of GmLHY genes alters plant height and internode length in soybean. BMC Plant Biology 19(1):562

doi: 10.1186/s12870-019-2145-8
[36]

Di YH, Sun XJ, Hu Z, Jiang QY, Song GH, et al. 2019. Enhancing the CRISPR/Cas9 system based on multiple GmU6 promoters in soybean. Biochemical and Biophysical Research Communications 519(4):819−23

doi: 10.1016/j.bbrc.2019.09.074
[37]

Lu J, Li S, Deng S, Wang M, Wu Y, et al. 2024. A method of genetic transformation and gene editing of succulents without tissue culture. Plant Biotechnology Journal 22(7):1981−88

doi: 10.1111/pbi.14318
[38]

Wen D, Wu L, Wang M, Yang W, Wang X, et al. 2022. CRISPR/Cas9-mediated targeted mutagenesis of FtMYB45 promotes flavonoid biosynthesis in Tartary buckwheat (Fagopyrum tataricum). Frontiers in Plant Science 13:879390

doi: 10.3389/fpls.2022.879390
[39]

Ma H, Liu N, Sun X, Zhu M, Mao T, et al. 2023. Establishment of an efficient transformation system and its application in regulatory mechanism analysis of biological macromolecules in tea plants. International Journal of Biological Macromolecules 244:125372

doi: 10.1016/j.ijbiomac.2023.125372
[40]

Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, et al. 2014. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology 166(2):455−69

doi: 10.1104/pp.114.239392
[41]

Zhu X, Xu W, Liu B, Zhan Y, Xia T. 2023. Adaptation of high-efficiency CRISPR/Cas9-based multiplex genome editing system in white lupin by using endogenous promoters. Physiologia Plantarum 175(4):e13976

doi: 10.1111/ppl.13976