[1]

Yan M, Nie H, Wang Y, Wang X, Jarret R, et al. 2022. Exploring and exploiting genetics and genomics for sweetpotato improvement: status and perspectives. Plant Communications 3:100332

doi: 10.1016/j.xplc.2022.100332
[2]

Galvao AC, Nicoletto C, Zanin G, Vargas PF, Sambo P. 2021. Nutraceutical content and daily value contribution of sweet potato accessions for the European market. Horticulturae 7:23

doi: 10.3390/horticulturae7020023
[3]

Alam MK. 2021. A comprehensive review of sweet potato (Ipomoea batatas [L.] Lam): revisiting the associated health benefits. Trends in Food Science & Technology 115:512−29

doi: 10.1016/j.jpgs.2021.07.001
[4]

Sugri I, Maalekuu BK, Kusi F, Gaveh E. 2017. Quality and shelf-life of sweet potato as influenced by storage and postharvest treatments. Trends in Horticultural Research 7:1−10

doi: 10.3923/thr.2017.1.10
[5]

Alam Z, Akter S, Khan MAH, Hossain MI, Amin MN, et al. 2024. Sweet potato (Ipomoea batatas L.) genotype selection using advanced indices and statistical models: a multi-year approach. Heliyon 10:e31569

doi: 10.1016/j.heliyon.2024.e31569
[6]

Amoah RS, Terry LA. 2018. 1-Methylcyclopropene (1-MCP) effects on natural disease resistance in stored sweet potato. Journal of the Science of Food and Agriculture 98:4597−605

doi: 10.1002/jsfa.8988
[7]

Lim SJ, Chung BY, Park MG, Cho JY. 2013. Effect of γ-ray irradiation on food qualities and sprouting inhibition of sweet potato roots (Ipomea batatas Lam.). Journal of Food Quality 36:309−15

doi: 10.1111/jfq.12043
[8]

Pang L, Lu G, Cheng J, Lu X, Ma D, et al. 2021. Physiological and biochemical characteristics of sweet potato (Ipomoea batatas (L.) Lam) roots treated by a high voltage alternating electric field during cold storage. Postharvest Biology and Technology 180:111619

doi: 10.1016/j.postharvbio.2021.111619
[9]

Tzortzakis N, Singleton I, Barnes J. 2007. Deployment of low-level ozone-enrichment for the preservation of chilled fresh produce. Postharvest Biology and Technology 43:261−70

doi: 10.1016/j.postharvbio.2006.09.005
[10]

Han Q, Gao H, Chen H, Fang X, Wu W. 2017. Precooling and ozone treatments affects postharvest quality of black mulberry (Morus nigra) fruits. Food Chemistry 221:1947−53

doi: 10.1016/j.foodchem.2016.11.152
[11]

Wang T, Yun J, Zhang Y, Bi Y, Zhao F, et al. 2021. Effects of ozone fumigation combined with nano-film packaging on the postharvest storage quality and antioxidant capacity of button mushrooms (Agaricus bisporus). Postharvest Biology and Technology 176:111501

doi: 10.1016/j.postharvbio.2021.111501
[12]

Li L, Xue H, Bi Y, Zhang R, Kouasseu CJ, et al. 2022. Ozone treatment inhibits dry rot development and diacetoxyscirpenol accumulation in inoculated potato tuber by influencing growth of Fusarium sulphureum and ergosterol biosynthesis. Postharvest Biology and Technology 185:111796

doi: 10.1016/j.postharvbio.2021.111796
[13]

Cervantes-Flores JC, Sosinski B, Pecota KV, Mwanga ROM, Catignani GL, et al. 2011. Identification of quantitative trait loci for dry-matter, starch, and β-carotene content in sweetpotato. Molecular Breeding 28:201−16

doi: 10.1007/s11032-010-9474-5
[14]

Li T, Deng YJ, Liu JX, Duan AQ, Liu H, et al. 2021. DcCCD4 catalyzes the degradation of α-carotene and β-carotene to affect carotenoid accumulation and taproot color in carrot. The Plant Journal 108:1116−30

doi: 10.1111/tpj.15498
[15]

Hou Q, Ufer G, Bartels D. 2016. Lipid signalling in plant responses to abiotic stress. Plant, Cell & Environment 39:1029−48

doi: 10.1111/pce.12666
[16]

Kang L, Park SC, Ji CY, Kim HS, Lee HS, et al. 2017. Metabolic engineering of carotenoids in transgenic sweetpotato. Breeding Science 67:27−34

doi: 10.1270/jsbbs.16118
[17]

He X, Zheng Y, Han L, Wang H, Wang L, et al. 2023. Research progress on postharvest storage and preservation of sweet potato. Journal of Food Safety & Quality 14:222−30

[18]

Huang W, Shi Y, Yan H, Wang H, Wu D, et al. 2023. The calcium-mediated homogalacturonan pectin complexation in cell walls contributes the firmness increase in loquat fruit during postharvest storage. Journal of Advanced Research 49:47−62

doi: 10.1016/j.jare.2022.09.009
[19]

Li L, Sun HN, Zhang M, Mu TH, Khan NM, et al. 2023. Fungal communities, nutritional, physiological and sensory characteristics of sweet potato under three Chinese representative storages. Postharvest Biology and Technology 201:112366

doi: 10.1016/j.postharvbio.2023.112366
[20]

Wang JH, Sun Q, Ma CN, Wei MM, Wang CK, et al. 2024. MdWRKY31-MdNAC7 regulatory network: orchestrating fruit softening by modulating cell wall-modifying enzyme MdXTH2 in response to ethylene signalling. Plant Biotechnology Journal 22:3244−61

doi: 10.1111/pbi.14445
[21]

Han L, Wang Z, Watkins CB, Ma L, He X, et al. 2024. The regulatory mechanisms of delayed senescence of nitric oxide treatment of hyacinth beans. Postharvest Biology and Technology 207:112592

doi: 10.1016/j.postharvbio.2023.112592
[22]

Ortuño-Hernández G, Fernández M, Martínez-Gómez P, Ruiz D, Salazar JA. 2024. Ripening-related gene expression analysis revealed the molecular impact of 1-MCP application on apricot fruit softening, color, aroma, and antioxidant capacity. Postharvest Biology and Technology 216:113037

doi: 10.1016/j.postharvbio.2024.113037
[23]

Valasiadis D, Kollaros MG, Michailidis M, Polychroniadou C, Tanou G, et al. 2024. Wide-characterization of high and low dry matter kiwifruit through spatiotemporal multi-omic approach. Postharvest Biology and Technology 209:112727

doi: 10.1016/j.postharvbio.2023.112727
[24]

Shahidi F, Ambigaipalan P. 2015. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects - a review. Journal of Functional Foods 18:820−97

doi: 10.1016/j.jff.2015.06.018
[25]

Cheng J, Zhang X, Miao Z, Wang H, Pang L, et al. 2024. Hot air treatment alleviates chilling injury of sweet potato tuberous roots by regulating osmoregulatory substances and inducing antioxidant defense system. Food Chemistry 459:140393

doi: 10.1016/j.foodchem.2024.140393
[26]

Xu P, Huber DJ, Gong D, Yun Z, Pan Y, et al. 2023. Amelioration of chilling injury in 'Guifei' mango fruit by melatonin is associated with regulation of lipid metabolic enzymes and remodeling of lipidome. Postharvest Biology and Technology 198:112233

doi: 10.1016/j.postharvbio.2022.112233
[27]

Farag KM, Palta JP. 1993. Use of lysophosphatidylethanolamine, a natural lipid, to retard tomato leaf and fruit senescence. Physiologia Plantarum 87:515−21

doi: 10.1111/j.1399-3054.1993.tb02501.x
[28]

Chen Y, Zeng L, Liao Y, Li J, Zhou B, et al. 2020. Enzymatic reaction-related protein degradation and proteinaceous amino acid metabolism during the black tea (Camellia sinensis) manufacturing process. Foods 9:66

doi: 10.3390/foods9010066
[29]

Wang Q, Wei Y, Jiang S, Wang X, Xu F, et al. 2020. Flavor development in peach fruit treated with 1-methylcyclopropene during shelf storage. Food Research International 137:109653

doi: 10.1016/j.foodres.2020.109653
[30]

Horbowicz M, Szablińska-Piernik J, Góraj-Koniarska J, Miyamoto K, Ueda J, et al. 2022. Changes in polar metabolites content during natural and methyl-jasmonate-promoted senescence of Ginkgo biloba leaves. International Journal of Molecular Sciences 23:266

doi: 10.3390/ijms23010266
[31]

Zhou F, Yue X, Xu D, Shi J, Fang S, et al. 2022. LED irradiation delays postharvest senescence in pakchoi by regulating amino acid metabolism. Postharvest Biology and Technology 194:112047

doi: 10.1016/j.postharvbio.2022.112047
[32]

Kourouma V, Mu TH, Zhang M, Sun HN. 2020. Comparative study on chemical composition, polyphenols, flavonoids, carotenoids and antioxidant activities of various cultivars of sweet potato. International Journal of Food Science and Technology 55:369−78

doi: 10.1111/ijfs.14336
[33]

Ma X, Zheng B, Ma Y, Xu W, Wu H, et al. 2018. Carotenoid accumulation and expression of carotenoid biosynthesis genes in mango flesh during fruit development and ripening. Scientia Horticulturae 237:201−6

doi: 10.1016/j.scienta.2018.04.009
[34]

Lana G, Zacarias-Garcia J, Distefano G, Gentile A, Rodrigo MJ, et al. 2020. Transcriptional analysis of carotenoids accumulation and metabolism in a pink-fleshed lemon mutant. Genes 11:1294

doi: 10.3390/genes11111294
[35]

Simpson K, Fuentes P, Quiroz-Iturra LF, Flores-Ortiz C, Contreras R, et al. 2018. Unraveling the induction of phytoene synthase 2 expression by salt stress and abscisic acid in Daucus carota. Journal of Experimental Botany 69:4113−26

doi: 10.1093/jxb/ery207
[36]

Suematsu K, Tanaka M, Kurata R, Kai Y. 2020. Comparative transcriptome analysis implied a ZEP paralog was a key gene involved in carotenoid accumulation in yellow-fleshed sweetpotato. Scientific Reports 10:20607

doi: 10.1038/s41598-020-77293-7
[37]

Efremov GI, Shchennikova AV, Kochieva EZ. 2021. Characterization of 15-cis-ζ-carotene isomerase Z-ISO in cultivated and wild tomato species differing in ripe fruit pigmentation. Plants 10:2365

doi: 10.3390/plants10112365
[38]

Tzortzakis N, Borland A, Singleton I, Barnes J. 2007. Impact of atmospheric ozone-enrichment on quality-related attributes of tomato fruit. Postharvest Biology and Technology 45:317−25

doi: 10.1016/j.postharvbio.2007.03.004
[39]

Xue G. 2018. Effect of varieties, growth periods and storage temperatureson texture quality of sweetpotatoes. Thesis. Zhejiang A&F University, China. pp. 40−44

[40]

Qiao Y, Zheng Y, Watkins CB, Zuo J, Liu H, et al. 2024. Transcriptomic and metabolomic analysis of quality deterioration of postharvest okra fruit at different storage temperatures. Postharvest Biology and Technology 218:113146

doi: 10.1016/j.postharvbio.2024.113146
[41]

Luo Z, Zhang L. 2010. Effects of O3 on lignification and related enzyme activity in bamboo shoots. Transactions of the Chinese Society for Agricultural Machinery 41:115−18

doi: 10.3969/j.issn.1000-1298.2010.11.022
[42]

Kitahara K, Nakamura Y, Otani M, Hamada T, Nakayachi O, et al. 2017. Carbohydrate components in sweetpotato storage roots: their diversities and genetic improvement. Breeding Science 67:62−72

doi: 10.1270/jsbbs.16135
[43]

Ren X, Zhang J. 2013. Research progresses on the key enzymes involved in sucrose metabolism in maize. Carbohydrate Research 368:29−34

doi: 10.1016/j.carres.2012.10.016
[44]

Yoon J, Cho LH, Tun W, Jeon JS, An G. 2021. Sucrose signaling in higher plants. Plant Science 302:110703

doi: 10.1016/j.plantsci.2020.110703
[45]

Yuan J, Zhang J, Hu W, Liu X, Murtaza A, et al. 2024. Cyclic variable temperature conditioning induces the rapid sweetening of sweet potato tuberous roots by regulating the sucrose metabolism. Food Chemistry 433:137364

doi: 10.1016/j.foodchem.2023.137364
[46]

Chen J, Fu C, Wang H, Sun X, Ma K, et al. 2025. Combination transcriptomic and metabolomic reveal deterioration of the blue honeysuckle (Lonicera caerulea L.) fruit and candidate genes regulating metabolism in the post-harvest stage. International Journal of Biological Macromolecules 284:138074

doi: 10.1016/j.ijbiomac.2024.138074
[47]

Weng Y, Dai X. 2008. Ethylene biosynthesis and signal transduction and its regulation on crop disease resistance. Molecular Plant Breeding 6:739−48

doi: 10.3969/j.issn.1672-416X.2008.04.018
[48]

Mata CI, Hertog MLATM, Van Raemdonck G, Baggerman G, Tran D, et al. 2019. Omics analysis of the ethylene signal transduction in tomato as a function of storage temperature. Postharvest Biology and Technology 155:1−10

doi: 10.1016/j.postharvbio.2019.04.016
[49]

Wang X, Meng H, Tang Y, Zhang Y, He Y, et al. 2022. Phosphorylation of an ethylene response factor by MPK3/MPK6 mediates negative feedback regulation of pathogen-induced ethylene biosynthesis in Arabidopsis. Journal of Genetics and Genomics 49:810−22

doi: 10.1016/j.jgg.2022.04.012
[50]

Andersen EJ, Ali S, Byamukama E, Yen Y, Nepal MP. 2018. Disease resistance mechanisms in plants. Genes 9:339

doi: 10.3390/genes9070339
[51]

Kim MG, Da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, et al. 2005. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749−59

doi: 10.1016/j.cell.2005.03.025
[52]

Nounurai P, Afifah A, Kittisenachai S, Roytrakul S. 2022. Phosphorylation of CAD1, PLDdelta, NDT1, RPM1 proteins induce resistance in tomatoes infected by Ralstonia solanacearum. Plants 11:726

doi: 10.3390/plants11060726
[53]

Yang H, Zhao Y, Chen N, Liu Y, Yang S, et al. 2021. A new adenylyl cyclase, putative disease-resistance RPP13-like protein 3, participates in abscisic acid-mediated resistance to heat stress in maize. Journal of Experimental Botany 72:283−301

doi: 10.1093/jxb/eraa431
[54]

Ballvora A, Ercolano MR, Weiß J, Meksem K, Bormann CA, et al. 2002. The R1 gene for potato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes. The Plant Journal 30:361−71

doi: 10.1046/j.1365-313X.2001.01292.x
[55]

Zhou H, Xie Y, Jiang Y, Nadeem H, Wang Y, et al. 2023. GhTLP1, a thaumatin-like protein 1, improves Verticillium wilt resistance in cotton via JA, ABA and MAPK signaling pathway-plant pathways. International Journal of Biological Macromolecules 253:127388

doi: 10.1016/j.ijbiomac.2023.127388