[1]

Giampieri F, Tulipani S, Alvarez-Suarez JM, Quiles JL, Mezzetti B, et al. 2012. The strawberry: composition, nutritional quality, and impact on human health. Nutrition 28(1):9−19

doi: 10.1016/j.nut.2011.08.009
[2]

Food and Agriculture Organization of the United Nations (FAO). 2021. FAOSTAT Statistics Database. FAO: Rome, Italy. www.fao.org/news/archive/news-by-date/2021/en

[3]

Food and Agriculture Organization of the United Nations (FAO). 2023. www.fao.org/faostat (Accessed Dec 2023)

[4]

Mahapatra S, Umbrey Y, Kumar K, Samanta M, Das S. 2020. Influence of different dates of sowing on diseases progression of leaf spot of strawberry. Journal of Mycopathological Research 58(1&2):39−45

[5]

Kotwal I. 2023. Morphological and molecular characterization of strawberry cultivars under subtropical conditions of Jammu. Doctoral dissertation. Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, India

[6]

Basu A, Nguyen A, Betts NM, Lyons TJ. 2014. Strawberry as a functional food: an evidence-based review. Critical Reviews in Food Science and Nutrition 54(6):790−806

doi: 10.1080/10408398.2011.608174
[7]

Scherr KD. 2021. Genetic and environmental factors influencing strawberry production, pollination, and pathogens. Doctoral dissertation. Oakland University, USA

[8]

Afrin S, Gasparrini M, Forbes-Hernandez TY, Reboredo-Rodriguez P, Mezzetti B, et al. 2016. Promising health benefits of the strawberry: a focus on clinical studies. Journal of Agricultural and Food Chemistry 64(22):4435−49

doi: 10.1021/acs.jafc.6b00857
[9]

Dwivedi M, Singh P, Pandey AK. 2024. Botrytis fruit rot management: What have we achieved so far? Food Microbiology 122:104564

doi: 10.1016/j.fm.2024.104564
[10]

Dwivedi M, Rai RK, Singh P. 2024. Fungal diversity associated with strawberry fruit loss in the Gorakhpur division, U. P. India. Agricultural Science Digest 00:1−9

doi: 10.18805/ag.D-6170
[11]

Wedge DE, Smith BJ, Quebedeaux JP, Constantin RJ. 2007. Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Protection 26(9):1449−58

doi: 10.1016/j.cropro.2006.12.007
[12]

Li Z, Yu X, Zhang W, Han R, Zhang J, et al. 2023. Identification, characterization, and pathogenicity of fungi associated with strawberry fruit rot in Shandong Province, China. Plant Disease 107(12):3773−82

doi: 10.1094/PDIS-04-23-0696-RE
[13]

Dowling ME, Hu MJ, Schnabel G. 2017. Identification and characterization of Botrytis fragariae isolates on strawberry in the United States. Plant Disease 101(10):1769−73

doi: 10.1094/PDIS-03-17-0316-RE
[14]

Marin MV, Seijo TE, Zuchelli E, Peres NA. 2022. Detection and characterization of quinone outside inhibitor-resistant Phytophthora cactorum and P. nicotianae causing leather rot in Florida strawberry. Plant Disease 106(4):1203−8

doi: 10.1094/PDIS-08-21-1658-RE
[15]

Irzykowska L, Irzykowski W, Jarosz A, Golebniak B. 2005. Association of Phytophthora citricola with leather rot disease of strawberry. The Journal of Phytopathology 153(11-12):680−85

doi: 10.1111/j.1439-0434.2005.01037.x
[16]

Feliziani E, Romanazzi G. 2016. Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. Journal of Berry Research 6(1):47−63

doi: 10.3233/JBR-150113
[17]

Ge Q, Zhao S, Shao X, Wei Y, Chen J, et al. 2024. Transcriptomic analysis reveals the resistance mechanism of flavonoids from Sedum aizoon L. to Rhizopus nigricans in postharvest strawberry fruit. Postharvest Biology and Technology 209:112723

doi: 10.1016/j.postharvbio.2023.112723
[18]

Hussein, MA, El-Said AHM, Yassein AS. 2020. Mycobiota associated with strawberry fruits, their mycotoxin potential and pectinase activity. Mycology 11(2):158−166

doi: 10.1080/21501203.2020.1759719
[19]

Pan L, Zhang W, Zhu N, Mao S, Tu K. 2014. Early detection and classification of pathogenic fungal disease in post-harvest strawberry fruit by electronic nose and gas chromatography–mass spectrometry. Food Research International 62:162−68

doi: 10.1016/j.foodres.2014.02.020
[20]

Lopes UP, Alfenas RF, Zambolim L, Crous PW, Costa H, et al. 2018. A new species of Calonectria causing rot on ripe strawberry fruit in Brazil. Australasian Plant Pathology 47:1−11

doi: 10.1007/s13313-017-0532-x
[21]

Ma W, Zhang Y, Wang C, Liu S, Liao X. 2018. A new disease of strawberry, fruit rot, caused by Geotrichum candidum in China. Plant Protection Science 54(2)

doi: 10.17221/76/2017-PPS
[22]

Ayoubi N, Soleimani MJ. 2016. Strawberry fruit rot caused by Neopestalotiopsis iranensis sp. nov., and N. mesopotamica. Current Microbiology 72:329−36

doi: 10.1007/s00284-015-0955-y
[23]

Al-Rahbi BAA, Al-Sadi AM, Al-Mahmooli IH, Al-Maawali SS, Al-Mahruqi NMT, et al. 2021. Meyerozyma guilliermondii SQUCC-33Y suppresses postharvest fruit rot of strawberry caused by Alternaria alternata. Australasian Plant Pathology 50:349−52

doi: 10.1007/s13313-021-00779-z
[24]

Patil JS, Suryawanshi NS. 2014. Fruit rot of strawberry caused by Alternaria alternata control using homoeopathic medicines. International journal of pharmaceutical science invention 3(11):57−58

[25]

Nam MH, Park MS, Kim HS, Kim TI, Kim HG. 2015. Cladosporium cladosporioides and C. tenuissimum cause blossom blight in strawberry in Korea. Mycobiology 43(3):354−359

doi: 10.5941/MYCO.2015.43.3.354
[26]

Petrasch S, Knapp SJ, Van Kan JAL, Blanco-Ulate B. 2019. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology 20(6):877−92

doi: 10.1111/mpp.12794
[27]

De Simone N, Pace B, Grieco F, Chimienti M, Tyibilika V, et al. 2020. Botrytis cinerea and table grapes: a review of the main physical, chemical, and bio-based control treatments in post-harvest. Foods 9(9):1138

doi: 10.3390/foods9091138
[28]

Pandey AK, Kumar P, Singh P, Tripathi NN, Bajpai VK. 2017. Essential oils: sources of antimicrobials and food preservatives. Frontiers in Microbiology 7:2161

doi: 10.3389/fmicb.2016.02161
[29]

Garrido C, Carbú M, Fernández-Acero FJ, González-Rodríguez VE, Cantoral JM. 2011. New insights in the study of strawberry fungal pathogens. Genes Genomes Genomics 5(1):24−39

[30]

Forcelini BB, Gonçalves FP, Peres NA. 2017. Effect of inoculum concentration and interrupted wetness duration on the development of anthracnose fruit rot of strawberry. Plant Disease 101(2):372−77

doi: 10.1094/PDIS-08-16-1175-RE
[31]

Tane MC. 2022. The main fungal diseases in strawberries crop-review 2022. Scientific Papers. Series A. Agronomy, Vol. LXV, No. 2

[32]

Higuera JJ, Garrido-Gala J, Lekhbou A, Arjona-Girona I, Amil-Ruiz F, et al. 2019. The strawberry FaWRKY1 transcription factor negatively regulates resistance to Colletotrichum acutatum in fruit upon infection. Frontiers in Plant Science 10:480

doi: 10.3389/fpls.2019.00480
[33]

Bhaskara Reddy MV, Angers P, Gosselin A, Arul J. 1998. Characterization and use of essential oil from Thymus vulgaris against Botrytis cinerea and Rhizopus stolonifer in strawberry fruits. Phytochemistry 47(8):1515−20

doi: 10.1016/S0031-9422(97)00795-4
[34]

Jacobs RL, Adhikari TB, Pattison J, Yencho GC, Fernandez GE, et al. 2020. Assessing rate-reducing foliar resistance to anthracnose crown rot and fruit rot in strawberry. Plant Disease 104(2):398−407

doi: 10.1094/PDIS-04-19-0687-RE
[35]

Mirmajlessi SM, Destefanis M, Gottsberger RA, Mänd M, Loit E. 2015. PCR-based specific techniques used for detecting the most important pathogens on strawberry: a systematic review. Systematic Reviews 4:9

doi: 10.1186/2046-4053-4-9
[36]

Amil-Ruiz F, Blanco-Portales R, Muñoz-Blanco J, Caballero JL. 2011. The strawberry plant defense mechanism: a molecular review. Plant and Cell Physiology 52(11):1873−903

doi: 10.1093/pcp/pcr136
[37]

Aljawasim BD, Samtani JB, Rahman M. 2023. New insights in the detection and management of anthracnose diseases in strawberries. Plants 12(21):3704

doi: 10.3390/plants12213704
[38]

Miller-Butler MA. 2016. Screening strawberry clones for anthracnose disease resistance using traditional techniques and molecular markers. Thesis. The University of Southern Mississippi, USA

[39]

Daugaard H. 1999. Cultural methods for controlling Botrytis cinerea Pers. in strawberry. Biological Agriculture & Horticulture 16(4):351−61

doi: 10.1080/01448765.1999.9755238
[40]

Shi XC, Wang SY, Duan XC, Wang YZ, Liu FQ, et al. 2021. Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. Journal of Crop Protection 141:105454

doi: 10.1016/j.cropro.2020.105454
[41]

Dara SK, Sandoval-Solis S, Peck D. 2016. Improving strawberry irrigation with micro-sprinklers and their impact on pest management. Agricultural Sciences 7(12):859−68

doi: 10.4236/as.2016.712078
[42]

Legard DE, MacKenzie SJ, Mertely JC, Chandler CK, Peres NA. 2005. Development of a reduced use fungicide program for control of Botrytis fruit rot on annual winter strawberry. Plant Disease 89(12):1353−8

doi: 10.1094/PD-89-1353
[43]

Xiao CL, Chandler CK, Price JF, Duval JR, Mertely JC, et al. 2001. Comparison of epidemics of Botrytis fruit rot and powdery mildew of strawberry in large plastic tunnel and field production systems. Plant Disease 85(8):901−9

doi: 10.1094/PDIS.2001.85.8.901
[44]

Simpson DW, Berrie A, Johnson AW. 2006. Hot water treatment to eliminate Colletotrichum acutatum from strawberry runner cuttings. Acta Horticulturae 708:255−58

doi: 10.17660/actahortic.2006.708.43
[45]

Mertely JC, Peres NA. 2012. Anthracnose fruit rot of strawberry. Edis 2012(9):207

doi: 10.32473/edis-pp130-2012
[46]

Chechi A, Stahlecker J, Dowling ME, Schnabel G. 2019. Diversity in species composition and fungicide resistance profiles in Colletotrichum isolates from apples. Pesticide Biochemistry and Physiology 158:18−24

doi: 10.1016/j.pestbp.2019.04.002
[47]

Sengupta P, Sen S, Mukherjee K, Acharya K. 2020. Postharvest diseases of Indian gooseberry and their management: a review. International Journal of Fruit Science 20(2):178−90

doi: 10.1080/15538362.2019.1608889
[48]

Melanson RA, Johnson C, Schnabel G, Ferguson MH, Desaeger J, et al. 2020. Southeast regional strawberry integrated pest management guide for plasticulture production. https://vtechworks.lib.vt.edu/

[49]

Mertely JC, MacKenzie SJ, Legard DE. 2002. Timing of fungicide applications for Botrytis cinerea based on development stage of strawberry flowers and fruit. Plant Disease 86(9):1019−24

doi: 10.1094/PDIS.2002.86.9.1019
[50]

Cosseboom SD, Ivors KL, Schnabel G, Bryson PK, Holmes GJ. 2019. Within-season shift in fungicide resistance profiles of Botrytis cinerea in California strawberry fields. Plant Disease 103(1):59−64

doi: 10.1094/PDIS-03-18-0406-RE
[51]

Wang M, Weiberg A, Lin FM, Thomma BPHJ, Huang HD, et al. 2016. Bidirectional cross-kingdom RNAi and fungal uptake of external RNAs confer plant protection. Nature Plants 2(10):16151

doi: 10.1038/nplants.2016.151
[52]

Hahn M. 2014. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. Journal of Chemical Biology 7:133−41

doi: 10.1007/s12154-014-0113-1
[53]

Leroux P. 2007. Chemical control of Botrytis and its resistance to chemical fungicides. In Botrytis: Biology, pathology and control, eds. Elad Y, Williamson B, Tudzynski P, Delen N. Dordrecht, Netherlands: Springer. pp. 195−222. doi: 10.1007/978-1-4020-2626-3_12

[54]

Amiri A, Zuniga AI, Peres NA. 2018. Prevalence of Botrytis cryptic species in strawberry nursery transplants and strawberry and blueberry commercial fields in the eastern United States. Plant Disease 102(2):398−404

doi: 10.1094/PDIS-07-17-1065-RE
[55]

Rupp S, Plesken C, Rumsey S, Dowling M, Schnabel G, et al. 2017. Botrytis fragariae, a new species causing gray mold on strawberries, shows high frequencies of specific and efflux-based fungicide resistance. Applied and Environmental Microbiology 83(9):e00269-17

doi: 10.1128/AEM.00269-17
[56]

Lopes MR, Klein MN, Ferraz LP, da Silva AC, Kupper KC. 2015. Saccharomyces cerevisiae: a novel and efficient biological control agent for Colletotrichum acutatum during pre-harvest. Microbiological Research 175:93−99

doi: 10.1016/j.micres.2015.04.003
[57]

Pertot I, Giovannini O, Benanchi M, Caffi T, Rossi V, et al. 2017. Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Protection 97:85−93

doi: 10.1016/j.cropro.2017.01.010
[58]

Peng G, Sutton JC. 1991. Evaluation of microorganisms for biocontrol of Botrytis cinerea in strawberry. Canadian Journal of Plant Pathology 13(3):247−57

doi: 10.1080/07060669109500938
[59]

Adikaram NKB, Joyce DC, Terryc LA. 2002. Biocontrol activity and induced resistance as a possible mode of action for Aureobasidium pullulans against grey mould of strawberry fruit. Australasian Plant Pathology 31:223−29

doi: 10.1071/AP02017
[60]

Huang R, Li GQ, Zhang J, Yang L, Che HJ, et al. 2011. Control of postharvest Botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. The Journal of Phytopathology 101(7):859−69

doi: 10.1094/PHYTO-09-10-0255
[61]

Sylla J, Alsanius BW, Krüger E, Wohanka W. 2015. Control of Botrytis cinerea in strawberries by biological control agents applied as single or combined treatments. European journal of plant pathology 143:461−71

doi: 10.1007/s10658-015-0698-4
[62]

Vagelas I, Papachatzis A, Kalorizou H, Wogiatzi E. 2009. Biological control of Botrytis fruit rot (Gray mold) on strawberry and red pepper fruits by olive oil mill wastewater. Biotechnology & Biotechnological Equipment 23:1489−91

doi: 10.2478/V10133-009-0017-3
[63]

Matthiessen JN, Kirkegaard JA. 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Critical Reviews in Plant Sciences 25(3):235−65

doi: 10.1080/07352680600611543
[64]

Morra MJ, Kirkegaard JA. 2002. Isothiocyanate release from soil-incorporated Brassica tissues. Soil Biology and Biochemistry 34(11):1683−90

doi: 10.1016/S0038-0717(02)00153-0
[65]

Hosseini S, Amini J, Saba MK, Karimi K, Pertot I. 2020. Preharvest and postharvest application of garlic and rosemary essential oils for controlling anthracnose and quality assessment of strawberry fruit during cold storage. Frontiers in Microbiology 11:1855

doi: 10.3389/fmicb.2020.01855
[66]

Meepagala KM, Bracken AK, Fronczek FR, Johnson RD, Wedge DE, et al. 2020. Furanocoumarin with phytotoxic activity from the leaves of Amyris elemifera (Rutaceae). ACS Omega 6(1):401−7

doi: 10.1021/acsomega.0c04778
[67]

Kahramanoğlu İ, Panfilova O, Kesimci TG, Bozhüyük AU, Gürbüz R, et al. 2022. Control of postharvest gray mold at strawberry fruits caused by Botrytis cinerea and improving fruit storability through Origanum onites L. and Ziziphora clinopodioides L. volatile essential oils. Agronomy 12(2):389

doi: 10.3390/agronomy12020389
[68]

de Oliveira Filho JG, da Cruz Silva G, de Aguiar AC, Cipriano L, de Azeredo HMC, et al. 2021. Chemical composition and antifungal activity of essential oils and their combinations against Botrytis cinerea in strawberries. Journal of Food Measurement and Characterization 15:1815−25

doi: 10.1007/s11694-020-00765-x
[69]

Yan J, Wu H, Chen K, Feng J, Zhang Y. 2021. Antifungal activities and mode of action of Cymbopogon citratus, Thymus vulgraris, and Origanum heracleoticum essential oil vapors against Botrytis cinerea and their potential application to control postharvest strawberry gray mold. Foods 10(10):2451

doi: 10.3390/foods10102451
[70]

Aguilar-González AE, Palou E, López-Malo A. 2015. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innovative Food Science and Emerging Technologies 32:181−85

doi: 10.1016/j.ifset.2015.09.003
[71]

Liu S, Shao X, Wei Y, Li Y, Xu F, et al. 2016. Solidago canadensis L. essential oil vapor effectively inhibits Botrytis cinerea growth and preserves postharvest quality of strawberry as a food model system. Frontiers in Microbiology 7:1179

doi: 10.3389/fmicb.2016.01179
[72]

Mohammadi A, Hashemi M, Hosseini SM. 2015. Nanoencapsulation of Zataria multiflora essential oil preparation and characterization with enhanced antifungal activity for controlling Botrytis cinerea, the causal agent of gray mould disease. Innovative Food Science and Emerging Technologies 28:73−80

doi: 10.1016/j.ifset.2014.12.011
[73]

Tančinová D, Hlebová M, Foltinová D, Mašková Z, Barboráková Z. 2021. Influence of eight chosen essential oils in the vapor phase on the growth of Rhizopus stolonifer and Rhizopus lyococcus. Potravinarstvo Slovak Journal of Food Sciences 15:378−86

doi: 10.5219/1586
[74]

Mohammadi S, Aroiee H, Aminifard MH, Tehranifar A, Jahanbakhsh V. 2014. Effects of essential oils to control Rhizopus stolonifer in vitro and in vivo on strawberry. Journal of Biological & Environmental Sciences 8(23):71−78

[75]

Hosseni S, Amini J, Rafei JN, Khorshidi J. 2020. Management of strawberry anthracnose using plant essential oils as bio-fungicides, and evaluation of their effects on quality of strawberry fruit. Journal of Oleo Science 69(4):377−90

doi: 10.5650/jos.ess19119
[76]

Tahmasebi M, Golmohammadi A, Nematollahzadeh A, Davari M, Chamani E. 2020. Control of nectarine fruits postharvest fungal rots caused by Botrytis Cinerea and Rhizopus Stolonifer via some essential oils. Journal of Food Science and Technology 57:1647−55

doi: 10.1007/s13197-019-04197-4
[77]

Fontana DC, Neto DD, Pretto MM, Mariotto AB, Caron BO, et al. 2021. Using essential oils to control diseases in strawberries and peaches. International Journal of Food Microbiology 338:108980

doi: 10.1016/j.ijfoodmicro.2020.108980
[78]

Ultee A, Kets EPW, Alberda M, Hoekstra FA, Smid EJ. 2000. Adaptation of the food-borne pathogen Bacillus cereus to carvacrol. Archives of Microbiology 174:233−38

doi: 10.1007/s002030000199
[79]

Abd-Elkader DY, Salem MZM, Komeil DA, Al-Huqail AA, Ali HM, et al. 2021. Post-harvest enhancing and Botrytis cinerea control of strawberry fruits using low cost and eco-friendly natural oils. Journal of Agronomy 11(6):1246

doi: 10.3390/agronomy11061246
[80]

Ibrahim EH, Alshahrani MY, Ghramh HA, Alothaid H, Kilany M, et al. 2022. Origanum majorana harvested from Al-Soda, Saudi Arabia promotes mitotic arrest and apoptosis in colon cancer cells. Journal of King Saud University - Science 34(3):101878

doi: 10.1016/j.jksus.2022.101878
[81]

Fielding BC, Knowles CL, Vries FA, Klaasen JA. 2015. Testing of eight medicinal plant extracts in combination with Kresoxim-Methyl for integrated control of Botrytis cinerea in apples. Agriculture 5(3):400−11

doi: 10.3390/agriculture5030400
[82]

Leite ARZ, Cardoso FAR, Gardenal AC, de Mello JCP, Marques LLM, et al. 2023. Control of fungal spoilage in strawberries using crude plant extracts against the fungus Botrytis cinerea. Natural Product Research 37(18):3122−35

doi: 10.1080/14786419.2022.2142220
[83]

El-Naggar NE, Saber WIA, Zweil AM, Bashir SI. 2022. An innovative green synthesis approach of chitosan nanoparticles and their inhibitory activity against phytopathogenic Botrytis cinerea on strawberry leaves. Scientific Reports 12(1):3515

doi: 10.1038/s41598-022-07073-y
[84]

Yang C, Lu JH, Xu MT, Shi XC, Song ZW, et al. 2022. Evaluation of chitosan coatings enriched with turmeric and green tea extracts on postharvest preservation of strawberries. LWT 163:113551

doi: 10.1016/j.lwt.2022.113551
[85]

Dėnė L, Valiuškaitė A. 2021. Sensitivity of Botrytis cinerea isolates complex to plant extracts. Molecules 26(15):4595

doi: 10.3390/molecules26154595
[86]

Sakthi Priya P, Angidi S, Thera UK, Nandeesha SV, Rajesh T. 2024. Management of strawberry grey mold disease using biocontrol agents and plant extracts. American Journal of Plant Sciences 15(7):538−51

doi: 10.4236/ajps.2024.157037
[87]

Šernaitė L, Rasiukevičiūtė N, Dambrauskienė E, Viškelis P, Valiuškaitė A. 2020. Biocontrol of strawberry pathogen Botrytis cinerea using plant extracts and essential oils. Zemdirbyste-Agriculture 107(2):147−52

doi: 10.13080/z-a.2020.107.019
[88]

Buzón-Durán L, Sánchez-Hernández E, Martín-Ramos P, Navas-Gracia LM, García-González MC, et al. 2023. Silene uniflora extracts for strawberry postharvest protection. Plant 12(9):1846

doi: 10.3390/plants12091846
[89]

El-Morsy MM, Ali M, Koriem EYK, Elian MI. 2022. Control of strawberry fruit rots by some Fungicides and their alternatives. Journal of Pharmaceutical Negative Results 13:1693−707

[90]

De Corato U, Salimbeni R, De Pretis A. 2018. Evaluation of an alternative mean for controlling postharvest Rhizopus rot of strawberries. Advances in Horticultural Science 32(3):325−34

doi: 10.13128/ahs-21886
[91]

Oliveira SS, Braga GC, Cordeiro NK, Stangarlin JR, Alves HJ. 2022. Green synthesis of silver nanoparticles with Euphorbia tirucalli extract and its protection against microbial decay of strawberries during storage. Journal of food Science and Technology 59:2025−34

doi: 10.1007/s13197-021-05217-y
[92]

Wang D, Shao S, Wang B, Guo D, Tan L, Chen Q. 2024. Fabrication of chitosan/guar gum/polyvinyl alcohol films incorporated with polymethoxyflavone-rich citrus extracts: postharvest shelf-life extension of strawberry fruits. Progress in Organic Coatings 194:108−611

doi: 10.1016/j.porgcoat.2024.108611
[93]

Naim N, Fauconnier ML, Ennahli N, Tahiri A, Baala M, et al. 2022. Chemical composition profiling and antifungal activity of saffron petal extract. Molecules 27(24):8742

doi: 10.3390/molecules27248742
[94]

Kasiamdari RS, Sangadah U. 2015. Identification of anthrachnose disease on strawberry fruit (Fragraria vesca L.) and its control by betel (Piper betle L.) leaf extract. KnE Life Sciences 2:458−65

doi: 10.18502/kls.v2i1.192
[95]

Motallebi P, Negahban M. 2024. Neem (Azadirachta indica) seed extract formulation for managing anthracnose and gray mold diseases in strawberry. South African Journal of Botany 169:66−71

doi: 10.1016/j.sajb.2024.04.027
[96]

Ortega J, De los Santos B, Romero F. 2006. Control of strawberry anthracnose by plant extracts. Acta Horticulturae 774:265−68

doi: 10.17660/ActaHortic.2008.774.34
[97]

Ahmad H, Matsubara YI. 2020. Suppression of anthracnose in strawberry using water extracts of lamiaceae herbs and identification of antifungal metabolites. The Horticulture Journal 89(4):359−66

doi: 10.2503/hortj.UTD-165
[98]

Das N, Bora B, Kalita MK, Mishra R, Sarma AK. 2023. Evaluation of common botanicals against Colletotrichum acutatum causing anthracnose disease of strawberry (Fragaria ananassa). The Pharma Innovation 12(2):1545−49

doi: 10.22271/tpi.2023.v12.i2s.18606
[99]

Belay ZA, James Caleb O. 2022. Role of integrated omics in unravelling fruit stress and defence responses during postharvest: a review. Food Chemistry: Molecular Sciences 5:100118

doi: 10.1016/j.fochms.2022.100118
[100]

Crandall SG, Gold KM, Jiménez-Gasco MDM, Filgueiras CC, Willett DS. 2020. A multi-omics approach to solving problems in plant disease ecology. PLoS ONE 15(9):e0237975

doi: 10.1371/journal.pone.0237975
[101]

Rani M, Mangat HK, Pathak RK, Yadav IS. 2021. Harnessing the potential of omics for prevention and management of the complex crop plant’s diseases. Journal of Proteins and Proteomics 12(3):227−45

doi: 10.1007/s42485-021-00070-1
[102]

Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, et al. 1996. Life with 6000 genes. Science 274:546−67

doi: 10.1126/science.274.5287.546
[103]

AbuQamar SF, Moustafa K, Tran LSP. 2016. 'Omics' and plant responses to Botrytis cinerea. Frontiers in Plant Science 7:1658

doi: 10.3389/fpls.2016.01658
[104]

Plesken C, Pattar P, Reiss B, Noor ZN, Zhang L, et al. 2021. Genetic diversity of Botrytis cinerea revealed by multilocus sequencing, and identification of B. cinerea populations showing genetic isolation and distinct host adaptation. Frontiers in Plant Science 12:663027

doi: 10.3389/fpls.2021.663027
[105]

Sharma S, Marin MV, Lee MB, Baggio JS, Peres NA, et al. 2022. Genomic approaches for improving resistance to Phytophthora crown rot caused by P. cactorum in strawberry (Fragaria × ananassa). Frontiers in Agronomy 4:941111

doi: 10.3389/fagro.2022.941111
[106]

Staats M, van Kan JAL. 2012. Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryotic Cell 11:1413−14

doi: 10.1128/ec.00164-12
[107]

Van Kan JAL, Stassen JHM, Mosbach A, Van Der Lee TAJ, Faino L, et al. 2017. A gapless genome sequence of the fungus Botrytis cinerea. Molecular Plant Pathology 18(1):75−89

doi: 10.1111/mpp.12384
[108]

Atwell S, Corwin JA, Soltis NE, Subedy A, Denby KJ, et al. 2015. Whole genome resequencing of Botrytis cinerea isolates identifies high levels of standing diversity. Frontiers in Microbiology 6:996

doi: 10.3389/fmicb.2015.00996
[109]

Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, et al. 2011. The genome of woodland strawberry (Fragaria vesca). Nature Genetics 43(2):109−16

doi: 10.1038/ng.740
[110]

Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. 2017. Transcriptomics technologies. PLoS Computational Biology 13(5):e1005457

doi: 10.1371/journal.pcbi.1005457
[111]

Hilário S, Gonçalves MFM. 2023. Mechanisms underlying the pathogenic and endophytic lifestyles in Diaporthe: an omics-based approach. Horticulturae 9(4):423

doi: 10.3390/horticulturae9040423
[112]

Li Z, Shao X, Wei Y, Dai K, Xu J, et al. 2020. Transcriptome analysis of Botrytis cinerea in response to tea tree oil and its two characteristic components. Applied Microbiology and Biotechnology 104:2163−78

doi: 10.1007/s00253-020-10382-9
[113]

Xu J, Shao X, Wei Y, Xu F, Wang H. 2017. iTRAQ proteomic analysis reveals that metabolic pathways involving energy metabolism are affected by tea tree oil in Botrytis cinerea. Frontiers in Microbiology 8:1989

doi: 10.3389/fmicb.2017.01989
[114]

Romeo FV, Ballistreri G, Fabroni S, Pangallo S, Nicosia MGLD, et al. 2015. Chemical characterization of different sumac and pomegranate extracts effective against Botrytis cinerea rots. Molecules 20(7):11941−58

doi: 10.3390/molecules200711941