[1]

Zhang J, Richardson M, Karcher D, McCalla J, Mai J, et al. 2021. Dormant sprigging of bermudagrass and zoysiagrass. HortTechnology 31:395−404

doi: 10.21273/HORTTECH04763-20
[2]

Bock EM, Easton ZM. 2020. Export of nitrogen and phosphorus from golf courses: a review. Journal of Environmental Management 255:109817

doi: 10.1016/j.jenvman.2019.109817
[3]

Kim YS, Lee KS, Kim HG, Lee GJ. 2022. Biocontrol of Large Patch disease in zoysiagrass (Zoysia japonica) by Bacillus subtilis SA-15: identification of active compounds and synergism with a fungicide. Horticulturae 8:34

doi: 10.3390/horticulturae8010034
[4]

Feng K, Zhang Y, He Z, Ning D, Deng Y. 2019. Interdomain ecological networks between plants and microbes. Molecular Ecology Resources 19:1565−77

doi: 10.1111/1755-0998.13081
[5]

Sykes VR, Horvath BJ, Warnke SE, Askew SD, Baudoin AB, et al. 2017. Comparing digital and visual evaluations for accuracy and precision in estimating tall fescue brown patch severity. Crop Science 57:3303−09

doi: 10.2135/cropsci2016.08.0699
[6]

Hu L, Robert CAM, Cadot S, Zhang X, Ye M, et al. 2018. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications 9:2738

doi: 10.1038/s41467-018-05122-7
[7]

Wei H, He W, Li Z, Ge L, Zhang J, et al. 2022. Salt-tolerant endophytic bacterium Enterobacter ludwigii B30 enhance bermudagrass growth under salt stress by modulating plant physiology and changing rhizosphere and root bacterial community. Frontiers in Plant Science 13:959427

doi: 10.3389/fpls.2022.959427
[8]

Martin FM, Uroz S, Barker DG. 2017. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356:eaad4501

doi: 10.1126/science.aad4501
[9]

Galaviz C, Lopez BR, de-Bashan LE, Hirsch AM, Maymon M, et al. 2018. Root growth improvement of mesquite seedlings and bacterial rhizosphere and soil community changes are induced by inoculation with plant growth-promoting bacteria and promote restoration of eroded desert soil. Land Degradation & Development 29:1453−66

doi: 10.1002/ldr.2904
[10]

Baek D, Rokibuzzaman M, Khan A, Kim MC, Park HJ, et al. 2020. Plant-growth promoting Bacillus oryzicola YC7007 modulates stress-response gene expression and provides protection from salt stress. Frontiers in Plant Science 10:1646

doi: 10.3389/fpls.2019.01646
[11]

Ji C, Wang X, Song X, Zhou Q, Li C, et al. 2021. Effect of Bacillus velezensis JC-K3 on endophytic bacterial and fungal diversity in wheat under salt stress. Frontiers in Microbiology 12:802054

doi: 10.3389/fmicb.2021.802054
[12]

Zamioudis C, Pieterse CMJ. 2012. Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions 25:139−50

doi: 10.1094/MPMI-06-11-0179
[13]

Lee K, Lee J, Kim G, Kim Y, Kang S, et al. 2017. Rough-surface-enabled capacitive pressure sensors with 3D touch capability. Small 13:1700368

doi: 10.1002/smll.201700368
[14]

Burgess P, Huang B. 2014. Growth and physiological responses of creeping bentgrass (Agrostis stolonifera) to elevated carbon dioxide concentrations. Horticulture Research 1:14021

doi: 10.1038/hortres.2014.21
[15]

Murchie EH, Lawson T. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64:3983−98

doi: 10.1093/jxb/ert208
[16]

Lichtenthaler HK, Wellburn AR. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 11:591−92

doi: 10.1042/bst0110591
[17]

Gao WQ, Lü LH, Srivastava AK, Wu QS, Kuča K. 2020. Effects of mycorrhizae on physiological responses and relevant gene expression of peach affected by replant disease. Agronomy 10:186

doi: 10.3390/agronomy10020186
[18]

Wu W, Tang XP, Yang C, Liu HB, Guo NJ. 2013. Investigation of ecological factors controlling quality of flue-cured tobacco (Nicotiana tabacum L.) using classification methods. Ecological Informatics 16:53−61

doi: 10.1016/j.ecoinf.2013.04.008
[19]

Walkley A. 1935. An examination of methods for determining organic carbon and nitrogen in soils (with one text-figure. ). The Journal of Agricultural Science 25:598−609

doi: 10.1017/S0021859600019687
[20]

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335−36

doi: 10.1038/nmeth.f.303
[21]

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, et al. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41:D590−D596

doi: 10.1093/nar/gks1219
[22]

Wickham H. 2016. ggplot2. Cham: Springer International Publishing. doi: 10.1007/978-3-319-24277-4

[23]

McMurdie PJ, Holmes S. 2013. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217

doi: 10.1371/journal.pone.0061217
[24]

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, et al. 2020. vegan: community ecology package, version 2.5-7 November 2020. http://CRAN.R-project.org/package=vegan

[25]

Zheng Y, Li Z, Tan Z, Liu Y, Zhang X, et al. 2025. Iron (II)-EDTA alleviate salinity injury through regulating ion balance in halophyte seashore Paspalum. Grass Research 5:e002

doi: 10.48130/grares-0024-0029
[26]

Yin C, Casa Vargas JM, Schlatter DC, Hagerty CH, Hulbert SH, et al. 2021. Rhizosphere community selection reveals bacteria associated with reduced root disease. Microbiome 9:86

doi: 10.1186/s40168-020-00997-5
[27]

Bastian F, Bouziri L, Nicolardot B, Ranjard L. 2009. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biology and Biochemistry 41:262−75

doi: 10.1016/j.soilbio.2008.10.024
[28]

Beck J, Echtenacher B, Ebel F. 2013. Woronin bodies, their impact on stress resistance and virulence of the pathogenic mould Aspergillus fumigatus and their anchoring at the septal pore of filamentous Ascomycota. Molecular Microbiology 89:857−71

doi: 10.1111/mmi.12316
[29]

Bao X, Zou J, Zhang B, Wu L, Yang T, et al. 2022. Arbuscular mycorrhizal fungi and microbes interaction in rice mycorrhizosphere. Agronomy 12:1277

doi: 10.3390/agronomy12061277
[30]

Hoyos-Carvajal L, Orduz S, Bissett J. 2009. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genetics and Biology 46:615−31

doi: 10.1016/j.fgb.2009.04.006
[31]

Kwaśna H, Łakomy P, Mallett K. 2004. Reaction of Armillaria ostoyae to forest soil microfungi. Forest Pathology 34:147−62

doi: 10.1111/j.1439-0329.2004.00353.x
[32]

Fall AF, Nakabonge G, Ssekandi J, Founoune-Mboup H, Apori SO, et al. 2022. Roles of arbuscular mycorrhizal fungi on soil fertility: contribution in the improvement of physical, chemical, and biological properties of the soil. Frontiers in Fungal Biology 3:723892

doi: 10.3389/ffunb.2022.723892
[33]

Li J, Chai Q, Chen Z, Malik K, Li C. 2025. Interactions of Epichloë endophyte and arbuscular mycorrhizal fungi on wild barley under salt stress. Grass Research 5:e007

doi: 10.48130/grares-0025-0004
[34]

Bennett AE, Groten K. 2022. The costs and benefits of plant-arbuscular mycorrhizal fungal interactions. Annual Review of Plant Biology 73:649−72

doi: 10.1146/annurev-arplant-102820-124504
[35]

Moukarzel R, Ridgway HJ, Liu J, Guerin-Laguette A, Jones EE. 2022. AMF community diversity promotes grapevine growth parameters under high black foot disease pressure. Journal of Fungi 8:250

doi: 10.3390/jof8030250
[36]

Spagnoletti FN, Leiva M, Chiocchio V, Lavado RS. 2018. Phosphorus fertilization reduces the severity of charcoal rot (Macrophomina phaseolina) and the arbuscular mycorrhizal protection in soybean. Journal of Plant Nutrition and Soil Science 181:855−60

doi: 10.1002/jpln.201700569
[37]

Ren L, Lou Y, Zhang N, Zhu X, Hao W, et al. 2013. Role of arbuscular mycorrhizal network in carbon and phosphorus transfer between plants. Biology and Fertility of Soils 49:3−11

doi: 10.1007/s00374-012-0689-y
[38]

Wang F, Zhang L, Zhou J, Rengel Z, George TS, et al. 2022. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant and Soil 481:1−22

doi: 10.1007/s11104-022-05621-z
[39]

Song YY, Cao M, Xie LJ, Liang XT, Zeng RS, et al. 2011. Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza 21:721−31

doi: 10.1007/s00572-011-0380-4
[40]

Neeraj, Singh K. 2011. Organic amendments to soil inoculated arbuscular mycorrhizal fungi and Pseudomonas fluorescens treatments reduce the development of root-rot disease and enhance the yield of Phaseolus vulgaris L. European Journal of Soil Biology 47:288−95

doi: 10.1016/j.ejsobi.2011.07.002
[41]

Dehariya K, Shukla A, Sheikh I, Vyas D. 2015. Trichoderma and arbuscular mycorrhizal fungi based biocontrol of Fusarium udum butler and their growth promotion effects on pigeon pea. Journal of Agricultural Science and Technology 17:505−17

[42]

Devi NO, Tombisana Devi RK, Debbarma M, Hajong M, Thokchom S. 2022. Effect of endophytic Bacillus and arbuscular mycorrhiza fungi (AMF) against Fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici. Egyptian Journal of Biological Pest Control 32:1

doi: 10.1186/s41938-021-00499-y
[43]

Beckers B, De Beeck MO, Weyens N, Boerjan W, Vangronsveld J. 2017. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome 5:25

doi: 10.1186/s40168-017-0241-2
[44]

Fierer N, Bradford MA, Jackson RB. 2007. Toward an ecological classification of soil bacteria. Ecology 88:1354−64

doi: 10.1890/05-1839
[45]

Huang L, Liu X, Ye Y, Chen M, Zhou S. 2020. Evidence for the coexistence of direct and riboflavin-mediated interspecies electron transfer in Geobacter co-culture. Environmental Microbiology 22:243−54

doi: 10.1111/1462-2920.14842
[46]

Castiglione AM, Mannino G, Contartese V, Bertea CM, Ertani A. 2021. Microbial biostimulants as response to modern agriculture needs: composition, role and application of these innovative products. Plants 10:1533

doi: 10.3390/plants10081533
[47]

Coban O, De Deyn GB, van der Ploeg M. 2022. Soil microbiota as game-changers in restoration of degraded lands. Science 375:abe0725

doi: 10.1126/science.abe0725
[48]

Altieri MA, Nicholls CI. 2003. Soil fertility management and insect pests: harmonizing soil and plant health in agroecosystems. Soil and Tillage Research 72:203−11

doi: 10.1016/S0167-1987(03)00089-8
[49]

Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S, et al. 2016. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytologist 209:798−811

doi: 10.1111/nph.13697
[50]

Hongsanan S, Hyde KD, Phookamsak R, Wanasinghe DN, McKenzie EHC, et al. 2020. Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. Mycosphere 11:1553−2107

doi: 10.5943/mycosphere/11/1/13
[51]

van den Brink J, Facun K, de Vries M, Stielow JB. 2015. Thermophilic growth and enzymatic thermostability are polyphyletic traits within Chaetomiaceae. Fungal Biology 119:1255−66

doi: 10.1016/j.funbio.2015.09.011
[52]

Langwig MV, De Anda V, Dombrowski N, Seitz KW, Rambo IM, et al. 2022. Correction to: Large-scale protein level comparison of Deltaproteobacteria reveals cohesive metabolic groups. The ISME Journal 16:899

doi: 10.1038/s41396-021-01091-w
[53]

Dai L, Zhang G, Yu Z, Ding H, Xu Y, et al. 2019. Effect of drought stress and developmental stages on microbial community structure and diversity in peanut rhizosphere soil. International Journal of Molecular Sciences 20:2265

doi: 10.3390/ijms20092265