[1]

Belton B, Johnson DS, Thrift E, Olsen J, Hossain MAR, et al. 2022. Dried fish at the intersection of food science, economy, and culture: a global survey. Fish and Fisheries 23:941−62

doi: 10.1111/faf.12664
[2]

Belleggia L, Milanović V, Cesaro C, Cardinali F, Garofalo C, et al. 2021. Exploratory study on histamine content and histidine decarboxylase genes of gram-positive bacteria in Hákarl. Journal of Aquatic Food Product Technology 30:907−13

doi: 10.1080/10498850.2021.1948478
[3]

Chen JN, Zhang YY, Huang XH, Dong M, Dong XP, et al. 2023. Integrated volatolomics and metabolomics analysis reveals the characteristic flavor formation in Chouguiyu, a traditional fermented mandarin fish of China. Food Chemistry 418:135874

doi: 10.1016/j.foodchem.2023.135874
[4]

Li Y, Li W, Li C, Li L, Yang D, et al. 2023. Novel insight into flavor and quality formation in naturally fermented low-salt fish sauce based on microbial metabolism. Food Research International 166:112586

doi: 10.1016/j.foodres.2023.112586
[5]

Corona O, Cinquanta L, Li Citra C, Mazza F, Ferrantelli V, et al. 2023. Evolution of free amino acids, histamine and volatile compounds in the Italian anchovies (Engraulis encrasicolus L.) sauce at different ripening times. Foods 12:126

doi: 10.3390/foods12010126
[6]

Hungerford JM. 2021. Histamine and scombrotoxins. Toxicon 201:115−26

doi: 10.1016/j.toxicon.2021.08.013
[7]

Qiu Q, Dewey-Mattia D, Subramhanya S, Cui Z, Griffin PM, et al. 2021. Food recalls associated with foodborne disease outbreaks, United States, 2006–2016. Epidemiology and Infection 149:e190

doi: 10.1017/S0950268821001722
[8]

Lee NS, Chu SC. 2023. Scombroid poisoning: a traveller's tale. Medical Journal of Australia 218:394

doi: 10.5694/mja2.51924
[9]

Hajimohammadi B, Raeisi M, Eftekhar E, Mohebat R, Saffari A. 2019. Studying the effect of Allium sativum and Bunium persicum essential oils on histamine production in Mahyaveh, an Iranian seasoned fish sauce. Journal of Food Safety 39:e12590

doi: 10.1111/jfs.12590
[10]

Zhang Y, Zhang J, Lin X, Liang H, Zhang S, et al. 2022. Lactobacillus strains inhibit biogenic amine formation in salted mackerel (Scomberomorus niphonius). LWT 155:112851

doi: 10.1016/j.lwt.2021.112851
[11]

Tian X, Gao P, Xu Y, Xia W, Jiang Q. 2021. Reduction of biogenic amines accumulation with improved flavor of low-salt fermented bream (Parabramis pekinensis) by two-stage fermentation with different temperature. Food Bioscience 44:101438

doi: 10.1016/j.fbio.2021.101438
[12]

Ghayoomi H, Habibi Najafi MB, Edalatian Dovom MR, Pourfarzad A. 2023. Low salt and biogenic amines fermented fish sauce (Mahyaveh) as potential functional food and ingredient. LWT 182:114801

doi: 10.1016/j.lwt.2023.114801
[13]

Sakpetch P, Benchama O, Masniyom P, Salaipeth L, Kanjan P. 2022. Physicochemical characteristics and flavor profiles of fermented fish sauce (budu) during fermentation in commercial manufacturing plant. Journal of Food Science and Technology 59:693−702

doi: 10.1007/s13197-021-05064-x
[14]

Mente A, O'Donnell M, Rangarajan S, McQueen M, Dagenais G, et al. 2018. Urinary sodium excretion, blood pressure, cardiovascular disease, and mortality: a community-level prospective epidemiological cohort study. The Lancet 392:496−506

doi: 10.1016/S0140-6736(18)31376-X
[15]

GBD 2017 Diet Collaborators. 2019. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 393:1958−72

doi: 10.1016/S0140-6736(19)30041-8
[16]

Sun Y, Xu Y, Gao P, Xia W, Hua Q, et al. 2021. Improvement of the quality stability of vacuum-packaged fermented fish (Suanyu) stored at room temperature by irradiation and thermal treatments. International Journal of Food Science & Technology 56:224−32

doi: 10.1111/ijfs.14622
[17]

Sun Y, Hua Q, Tian X, Xu Y, Gao P, et al. 2022. Effect of starter cultures and spices on physicochemical properties and microbial communities of fermented fish (Suanyu) after fermentation and storage. Food Research International 159:111631

doi: 10.1016/j.foodres.2022.111631
[18]

Pongsetkul J, Benjakul S. 2021. Development of modified atmosphere packaging (MAP) on shelf-life extension of pla-duk-ra (dried fermented catfish) stored at room temperature. Food Control 124:107882

doi: 10.1016/j.foodcont.2021.107882
[19]

van Eck NJ, Waltman L. 2010. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84:523−38

doi: 10.1007/s11192-009-0146-3
[20]

Li H, Li G, Bi Y, Liu S. 2024. Fermented fish products: balancing tradition and innovation for improved quality. Foods 13:2565

doi: 10.3390/foods13162565
[21]

Zang J, Xu Y, Xia W, Regenstein JM. 2020. Quality, functionality, and microbiology of fermented fish: a review. Critical Reviews in Food Science and Nutrition 60:1228−42

doi: 10.1080/10408398.2019.1565491
[22]

Chan SXY, Fitri N, Mio Asni NS, Sayuti NH, Azlan UK, et al. 2023. A comprehensive review with future insights on the processing and safety of fermented fish and the associated changes. Foods 12:558

doi: 10.3390/foods12030558
[23]

Visciano P, Schirone M, Paparella A. 2020. An overview of histamine and other biogenic amines in fish and fish products. Foods 9:1795

doi: 10.3390/foods9121795
[24]

DeBeer J, Bell JW, Nolte F, Arcieri J, Correa G. 2021. Histamine limits by country: A survey and review. Journal of Food Protection 84:1610−28

doi: 10.4315/JFP-21-129
[25]

Tırıs G, Sare Yanıkoğlu R, Ceylan B, Egeli D, Kepekci Tekkeli E, et al. 2023. A review of the currently developed analytical methods for the determination of biogenic amines in food products. Food Chemistry 398:133919

doi: 10.1016/j.foodchem.2022.133919
[26]

European Commission. 2005. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. https://eur-lex.europa.eu/eli/reg/2005/2073/2020-03-08 (Accessed on January 7, 2025)

[27]

Health Canada. 2020. Health Canada's maximum levels for chemical contaminants in foods. www.canada.ca/en/health-canada/services/food-nutrition/food-safety/chemical-contaminants/maximum-levels-chemical-contaminants-foods.html (Accessed on January 7, 2025)

[28]

Food Standards Australia New Zealand. 2024. Australia New Zealand Food Standards Code – Schedule 19 – Maximum levels of contaminants and natural toxicants. www.legislation.gov.au/F2015L00454/latest/text (Accessed on January 7, 2025)

[29]

Chinese Standard. 2016. National food safety standard—Determination of biogenic amine in food. GB 5009.208-2016. Beijing, China: National Health and Family Planning Commission/China Food and Drug Administration

[30]

U.S. Food and Drug Administration. 2022. FDA issues draft Compliance Policy Guide for decomposition and histamine in scombrotoxin (histamine)-forming fish and fishery products. www.fda.gov/food/cfsan-constituent-updates/fda-issues-draft-compliance-policy-guide-decomposition-and-histamine-scombrotoxin-histamine-forming (Accessed on January 7, 2025)

[31]

Ly D, Mayrhofer S, Schmidt JM, Zitz U, Domig KJ. 2020. Biogenic amine contents and microbial characteristics of Cambodian fermented foods. Foods 9:198

doi: 10.3390/foods9020198
[32]

Zhang X, Fang C, Lou X, Han F, Li S, et al. 2024. Survey of the biogenic amines in typical foods commonly consumed from the Chinese market. Food Control 157:110130

doi: 10.1016/j.foodcont.2023.110130
[33]

Cicero A, Cammilleri G, Galluzzo FG, Calabrese I, Pulvirenti A, et al. 2020. Histamine in fish products randomly collected in southern Italy: a 6-year study. Journal of Food Protection 83:241−48

doi: 10.4315/0362-028X.JFP-19-305
[34]

Marui J, Phouphasouk S, Giavang Y, Yialee Y, Boulom S. 2021. Relationship between salinity and histamine accumulation in padaek, a salt-fermented freshwater fish paste from Laos. Journal of Food Protection 84:429−36

doi: 10.4315/JFP-20-272
[35]

Meng J, Yang Q, Wan W, Zhu Q, Zeng X. 2022. Physicochemical properties and adaptability of amine-producing Enterobacteriaceae isolated from traditional Chinese fermented fish (Suan yu). Food Chemistry 369:130885

doi: 10.1016/j.foodchem.2021.130885
[36]

Sang X, Ma X, Hao H, Bi J, Zhang G, et al. 2020. Evaluation of biogenic amines and microbial composition in the Chinese traditional fermented food grasshopper sub shrimp paste. LWT 134:109979

doi: 10.1016/j.lwt.2020.109979
[37]

Codex Alimentarius Commission. 2011. Standard for fish sauce, CXS 302-2011. www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXS%2B302-2011%252FCXS_302e.pdf (Accessed on Jan 7, 2025)

[38]

Jiang C, Liu Y, Jin W, Zhu K, Miao X, et al. 2024. Effects of curing concentration and drying time on flavor and microorganisms in dry salted Spanish mackerel. Food Chemistry: X 21:101126

doi: 10.1016/j.fochx.2024.101126
[39]

Wang D, Yamaki S, Kawai Y, Yamazaki K. 2020. Histamine production behaviors of a psychrotolerant histamine-producer, Morganella psychrotolerans, in various environmental conditions. Current Microbiology 77:460−67

doi: 10.1007/s00284-019-01853-y
[40]

Ma X, Sang X, Yan C, Zhang Y, Bi J, et al. 2022. Dynamics of bacterial composition and association with quality formation and biogenic amines accumulation during fish sauce spontaneous fermentation. Applied and Environmental Microbiology 88:e00690-22

doi: 10.1128/aem.00690-22
[41]

Abré MG, Kouakou-Kouamé CA, N'guessan FK, Teyssier C, Montet D. 2023. Occurrence of biogenic amines and their correlation with bacterial communities in the Ivorian traditional fermented fish adjuevan during the storage. Folia Microbiologica 68:257−75

doi: 10.1007/s12223-022-01010-2
[42]

Ma X, Bi J, Li X, Zhang G, Hao H, et al. 2021. Contribution of microorganisms to biogenic amine accumulation during fish sauce fermentation and screening of novel starters. Foods 10:2572

doi: 10.3390/foods10112572
[43]

Chen J, Tang H, Zhang M, Sang S, Jia L, et al. 2022. Exploration of the roles of microbiota on biogenic amines formation during traditional fermentation of Scomber japonicus. Frontiers in Microbiology 13:1030789

doi: 10.3389/fmicb.2022.1030789
[44]

Tao Z, Wu X, Liu W, Takahashi H, Xie S, et al. 2022. Prevalence of histamine-forming bacteria in two kinds of salted fish at town markets of Guangdong province of south China. Journal of Food Protection 85:956−60

doi: 10.4315/JFP-21-215
[45]

Belleggia L, Milanović V, Cardinali F, Garofalo C, Clementi F, et al. 2021. Prevalence of histidine decarboxylase genes of gram-positive bacteria in surströmming as revealed by qPCR. Indian Journal of Microbiology 61:96−99

doi: 10.1007/s12088-020-00907-1
[46]

Yang Q, Meng J, Zhang W, Liu L, He L, et al. 2020. Effects of amino acid decarboxylase genes and pH on the amine formation of enteric bacteria from Chinese traditional fermented fish (Suan yu). Frontiers in Microbiology 11:1130

doi: 10.3389/fmicb.2020.01130
[47]

Liu J, Lin C, Zhang W, Yang Q, Meng J, et al. 2021. Exploring the bacterial community for starters in traditional high-salt fermented Chinese fish (Suanyu). Food Chemistry 358:129863

doi: 10.1016/j.foodchem.2021.129863
[48]

Han J, Zhang J, Lin X, Liang H, Li S, et al. 2020. Effect of autochthonous lactic acid bacteria on fermented Yucha quality. LWT 123:109060

doi: 10.1016/j.lwt.2020.109060
[49]

Hua Q, Sun Y, Xu Y, Gao P, Xia W. 2022. Contribution of mixed commercial starter cultures to the quality improvement of fish-chili paste, a Chinese traditional fermented condiment. Food Bioscience 46:101559

doi: 10.1016/j.fbio.2022.101559
[50]

Perez S, Corti-Monzón G, Yeannes MI, Zaritzky NE, Villegas-Plazas M, et al. 2021. Assembly of hyperhalophilic complex consortia of isolates from anchovy ripening attaining histamine degradation and their microbiome configuration. LWT 142:111010

doi: 10.1016/j.lwt.2021.111010
[51]

Perez S, Murialdo SE, Ameztoy IM, Zaritzky NE, Yeannes MI. 2020. New insights into halophilic prokaryotes isolated from salting–ripening anchovies (Engraulis anchoita) process focused on histamine-degrading strains. Extremophiles 24:787−96

doi: 10.1007/s00792-020-01194-w
[52]

Hou J, Li XX, Sun Y, Li Y, Yang XY, et al. 2024. Novel archaeal histamine oxidase from Natronobeatus ordinarius: Insights into histamine degradation for enhancing food safety. Journal of Agricultural and Food Chemistry 72:6519−25

doi: 10.1021/acs.jafc.4c00695
[53]

Ma X, Zhang Y, Li X, Bi J, Zhang G, et al. 2022. Impacts of salt-tolerant Staphylococcus nepalensis 5-5 on bacterial composition and biogenic amines accumulation in fish sauce fermentation. International Journal of Food Microbiology 361:109464

doi: 10.1016/j.ijfoodmicro.2021.109464
[54]

Tran TTH, Nguyen TPA, Pham TD, Nguyen TH, Nguyen TLD, et al. 2023. Histamine-degrading halophilic bacteria from traditional fish sauce: Characterization of Virgibacillus campisalis TT8.5 for histamine reduction. Journal of Biotechnology 366:46−53

doi: 10.1016/j.jbiotec.2023.03.002
[55]

Shim KB, In JJ, Lee JB, Han HG, Son SA, et al. 2024. Effects of the physical structure and surface charge of activated carbon on the reduction of biogenic amines in anchovy fish sauce. Food Chemistry 443:138399

doi: 10.1016/j.foodchem.2024.138399
[56]

In JJ, Shim KB, Lee JB, Bae YJ, Kwon GY, et al. 2024. Effect of activated carbon-based two-stage adsorption on biogenic amine reduction and quality of anchovy fish sauce at industrial scale. Food Chemistry 458:140169

doi: 10.1016/j.foodchem.2024.140169
[57]

Ding Y, Qiu M, Tang X, Zheng R, Zhou X. 2023. Investigation of histamine removal by electrodialysis from the fermented fish sauce and its effects on the flavor. Foods 12:1325

doi: 10.3390/foods12061325
[58]

Hori M, Kawai Y, Nakamura K, Shimada M, Iwahashi H, et al. 2022. Characterization of the bacterial community structure in traditional Gifu ayu-narezushi (fermented sweetfish). Journal of Bioscience and Bioengineering 134:331−37

doi: 10.1016/j.jbiosc.2022.07.012
[59]

Axelsson L, Bjerke GA, McLeod A, Berget I, Holck AL. 2020. Growth behavior of Listeria monocytogenes in a traditional Norwegian fermented fish product (rakfisk), and its inhibition through bacteriophage addition. Foods 9:119

doi: 10.3390/foods9020119
[60]

Zhou Y, Ma X, Wu J, Razak MA, Yuan L, et al. 2023. NMR-based metabolic analysis of Bacillus velezensis DZ11 applied to low-salt fermented coarse fish involved in the formation of flavor precursors. Food Science and Technology 43:e117022

doi: 10.1590/fst.117022
[61]

Speranza B, Racioppo A, Campaniello D, Altieri C, Sinigaglia M, et al. 2020. Use of autochthonous Lactiplantibacillus plantarum strains to produce fermented fish products. Frontiers in Microbiology 11:615904

doi: 10.3389/fmicb.2020.615904
[62]

Zang J, Xu Y, Xia W, Regenstein JM, Yu D, et al. 2020. Correlations between microbiota succession and flavor formation during fermentation of Chinese low-salt fermented common carp (Cyprinus carpio L.) inoculated with mixed starter cultures. Food Microbiology 90:103487

doi: 10.1016/j.fm.2020.103487
[63]

Li L, Xu Y. 2021. Influence of Lactobacillus plantarum on managing lipolysis and flavor generation of Staphylococcus xylosus and Saccharomyces cerevisiae in fish paste. LWT 140:110709

doi: 10.1016/j.lwt.2020.110709
[64]

Gao P, Li L, Xia W, Xu Y, Liu S. 2020. Valorization of Nile tilapia (Oreochromis niloticus) fish head for a novel fish sauce by fermentation with selected lactic acid bacteria. LWT 129:109539

doi: 10.1016/j.lwt.2020.109539
[65]

Gao P, Zhang Z, Ge Y, Cao S, Zhang X, et al. 2022. Co-inoculation of Lactiplantibacillus pentosus 1 and Saccharomyces cerevisiae 31 for a salt-free fish sauce production from channel catfish (Ietalurus punetaus) bone. Food Bioscience 50:102137

doi: 10.1016/j.fbio.2022.102137
[66]

Gao R, Zhou J, Leng W, Shi T, Jin W, et al. 2020. Screening of a Planococcus bacterium producing a cold-adapted protease and its application in low-salt fish sauce fermentation. Journal of Food Processing and Preservation 44:e14625

doi: 10.1111/jfpp.14625
[67]

Thongsomboon W, Bunyatratchata A, Vongkampang T, Nammatra R, Prakitchaiwattana C, et al. 2023. Dynamic changes in Thai-style fermented fish: low-salt, short fermentation with autochthonous starter culture. LWT 188:115427

doi: 10.1016/j.lwt.2023.115427
[68]

Noma S, Koyanagi L, Kawano S, Hayashi N. 2020. Application of pressurized carbon dioxide during salt-reduced sardine fish sauce production. Food Science and Technology Research 26:195−204

doi: 10.3136/fstr.26.195
[69]

Tagawa J, Noma S, Demura M, Hayashi N. 2023. Comparison of reduced-salt fish sauces produced under pressurized carbon dioxide treatment from Sardinops melanostictus, Trachurus japonicus, Konosirus punctatus, Odontamblyopus lacepedii, and their mixture. Food and Bioprocess Technology 16:434−46

doi: 10.1007/s11947-022-02920-2
[70]

Joung BC, Min JG. 2018. Changes in postfermentation quality during the distribution process of anchovy (Engraulis japonicus) fish sauce. Journal of Food Protection 81:969−76

doi: 10.4315/0362-028X.JFP-17-348
[71]

Sun Y, Gao P, Xu Y, Xia W, Hua Q, et al. 2020. Effect of storage conditions on microbiological characteristics, biogenic amines, and physicochemical quality of low-salt fermented fish. Journal of Food Protection 83:1057−65

doi: 10.4315/JFP-19-607
[72]

Pongsetkul J, Benjakul S. 2022. Impact of sous vide cooking on quality and shelf-life of dried sour-salted fish. Journal of Food Processing and Preservation 46:e16142

doi: 10.1111/jfpp.16142
[73]

Ding N, Zhou Y, Dou P, Chang SKC, Feng R, et al. 2024. Colorful and nutritious abundance: potential of natural pigment application in aquatic products. Food Innovation and Advances 3:232−43

doi: 10.48130/fia-0024-0023
[74]

Moye ZD, Woolston J, Sulakvelidze A. 2018. Bacteriophage applications for food production and processing. Viruses 10:205

doi: 10.3390/v10040205
[75]

Ismail A, Lani MN, Zakeri HA, Hasim NN, Alias R, et al. 2021. Synergistic of antimicrobial activities of lactic acid bacteria in fermented Tilapia nicoliticus incorporated with selected spices. Food Research 5:163−73

doi: 10.26656/fr.2017.5(3).534
[76]

Li H, Wang Z, Zhu F, Li G. 2024. Alginate-based active and intelligent packaging: preparation, properties, and applications. International Journal of Biological Macromolecules 279:135441

doi: 10.1016/j.ijbiomac.2024.135441
[77]

Mohseni-Shahri F, Mehrzad A, Khoshbin Z, Sarabi-Jamab M, Khanmohamadi F, et al. 2023. Polyphenol-loaded bacterial cellulose nanofiber as a green indicator for fish spoilage. International Journal of Biological Macromolecules 224:1174−82

doi: 10.1016/j.ijbiomac.2022.10.203