[1]

da Silva Monteiro Wanderley BR, de Lima ND, Deolindo CTP, Kempka AP, Moroni LS, et al. 2024. Impact of pre-fermentative maceration techniques on the chemical characteristics, phenolic composition, in vitro bioaccessibility, and biological activities of alcoholic and acetic fermented products from jaboticaba (Plinia trunciflora). Food Research International 197:115246

doi: 10.1016/j.foodres.2024.115246
[2]

Wu SB, Long C, Kennelly EJ. 2013. Phytochemistry and health benefits of jaboticaba, an emerging fruit crop from Brazil. Food Research International 54:148−59

doi: 10.1016/j.foodres.2013.06.021
[3]

Inada KOP, Leite IB, Martins ABN, Fialho E, Tomás-Barberán FA, et al. 2021. Jaboticaba berry: a comprehensive review on its polyphenol composition, health effects, metabolism, and the development of food products. Food Research International 147:110518

doi: 10.1016/j.foodres.2021.110518
[4]

Wu SB, Dastmalchi K, Long C, Kennelly EJ. 2012. Metabolite profiling of jaboticaba (Myrciaria cauliflora) and other dark-colored fruit juices. Journal of Agricultural and Food Chemistry 60:7513−25

doi: 10.1021/jf301888y
[5]

Inada KOP, Duarte PA, Lapa J, Miguel MAL, Monteiro M. 2018. Jabuticaba (Myrciaria jaboticaba) juice obtained by steam-extraction: phenolic compound profile, antioxidant capacity, microbiological stability, and sensory acceptability. Journal of Food Science and Technology 55:52−61

doi: 10.1007/s13197-017-2769-3
[6]

Reynertson KA, Wallace AM, Adachi S, Gil RR, Yang H, et al. 2006. Bioactive depsides and anthocyanins from jaboticaba (Myrciaria cauliflora). Journal of Natural Products 69:1228−30

doi: 10.1021/np0600999
[7]

Gonzalez A, Zhao M, Leavitt JM, Lloyd AM. 2008. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. The Plant Journal 53:814−27

doi: 10.1111/j.1365-313X.2007.03373.x
[8]

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126:485−93

doi: 10.1104/pp.126.2.485
[9]

Li Y, Li H, Wang S, Li J, Bacha SAS, et al. 2023. Metabolomic and transcriptomic analyses of the flavonoid biosynthetic pathway in blueberry (Vaccinium spp.). Frontiers in Plant Science 14:1082245

doi: 10.3389/fpls.2023.1082245
[10]

Dick CA, Buenrostro J, Butler T, Carlson ML, Kliebenstein DJ, et al. 2011. Arctic mustard flower color polymorphism controlled by petal-specific downregulation at the threshold of the anthocyanin biosynthetic pathway. PLoS One 6:e18230

doi: 10.1371/journal.pone.0018230
[11]

Saito K, Yonekura-Sakakibara K, Nakabayashi R, Higashi Y, Yamazaki M, et al. 2013. The flavonoid biosynthetic pathway in Arabidopsis: structural and genetic diversity. Plant Physiology and Biochemistry 72:21−34

doi: 10.1016/j.plaphy.2013.02.001
[12]

Liu Z, Chen T, Ma L, Zhao Z, Zhao PX, et al. 2013. Global transcriptome sequencing using the Illumina platform and the development of EST-SSR markers in autotetraploid alfalfa. PLoS One 8:e83549

doi: 10.1371/journal.pone.0083549
[13]

Chaisson MJP, Huddleston J, Dennis MY, Sudmant PH, Malig M, et al. 2015. Resolving the complexity of the human genome using single-molecule sequencing. Nature 517:608−11

doi: 10.1038/nature13907
[14]

Feng Y, Zhao Y, Zhang J, Wang B, Yang C, et al. 2021. Full-length SMRT transcriptome sequencing and microsatellite characterization in Paulownia catalpifolia. Scientific Reports 11:8734

doi: 10.1038/s41598-021-87538-8
[15]

Ma X, Fan J, Wu Y, Zhao S, Zheng X, et al. 2020. Whole-genome de novo assemblies reveal extensive structural variations and dynamic organelle-to-nucleus DNA transfers in African and Asian rice. The Plant Journal 104:596−612

doi: 10.1111/tpj.14946
[16]

Zambrano-Moreno EL, Chávez-Jáuregui RN, Plaza MDL, Wessel-Beaver L. 2015. Phenolic content and antioxidant capacity in organically and conventionally grown eggplant (Solanum melongena) fruits following thermal processing. Food Science & Technology 35(3):414−20

doi: 10.1590/1678-457X.6656
[17]

Li A, Zhang J, Zhou Z. 2014. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinformatics 15:311

doi: 10.1186/1471-2105-15-311
[18]

Sun L, Luo H, Bu D, Zhao G, Yu K, et al. 2013. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Research 41:e166

doi: 10.1093/nar/gkt646
[19]

Kong L, Zhang Y, Ye ZQ, Liu XQ, Zhao SQ, et al. 2007. CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Research 35:W345−W349

doi: 10.1093/nar/gkm391
[20]

Fossen T, Slimestad R, Andersen ØM. 2003. Anthocyanins with 4'-glucosidation from red onion, Allium cepa. Phytochemistry 64:1367−74

doi: 10.1016/j.phytochem.2003.08.019
[21]

Davik J, Aaby K, Buti M, Alsheikh M, Šurbanovski N, et al. 2020. Major-effect candidate genes identified in cultivated strawberry (Fragaria × ananassa Duch.) for ellagic acid deoxyhexoside and pelargonidin-3-O-malonylglucoside biosynthesis, key polyphenolic compounds. Horticulture Research 7:125

doi: 10.1038/s41438-020-00347-4
[22]

Drăghici O, Păcală ML, Oancea S. 2018. Kinetic studies on the oxidative stabilization effect of red onion skins anthocyanins extract on parsley (Petroselinum crispum) seed oil. Food Chemistry 265:337−43

doi: 10.1016/j.foodchem.2018.05.075
[23]

He F, Mu L, Yan GL, Liang NN, Pan QH, et al. 2010. Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules 15:9057−91

doi: 10.3390/molecules15129057
[24]

Liu H, Liu Z, Wu Y, Zheng L, Zhang G. 2021. Regulatory mechanisms of anthocyanin biosynthesis in apple and pear. International Journal of Molecular Sciences 22:8441

doi: 10.3390/ijms22168441
[25]

Tatsuzawa F, Ando T, Saito N, Kanaya T, Kokubun H, et al. 2000. Acylated delphinidin 3-rutinoside-5-glucosides in the flowers of Petunia reitzii. Phytochemistry 54:913−17

doi: 10.1016/S0031-9422(00)00081-9
[26]

Samota MK, Sharma M, Kaur K, Sarita, Yadav DK, et al. 2022. Onion anthocyanins: extraction, stability, bioavailability, dietary effect, and health implications. Frontiers in Nutrition 9:917617

doi: 10.3389/fnut.2022.917617
[27]

Zhang Y, Hu Z, Chu G, Huang C, Tian S, et al. 2014. Anthocyanin accumulation and molecular analysis of anthocyanin biosynthesis-associated genes in eggplant (Solanum melongena L.). Journal of Agricultural and Food Chemistry 62:2906−12

doi: 10.1021/jf404574c
[28]

Wang XC, Wu J, Guan ML, Zhao CH, Geng P, et al. 2020. Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. The Plant Journal 101:637−52

doi: 10.1111/tpj.14570
[29]

Chen Q, Liu K, Yu R, Zhou B, Huang P, et al. 2021. From "dark matter" to "star": insight into the regulation mechanisms of plant functional long non-coding RNAs. Frontiers in Plant Science 12:650926

doi: 10.3389/fpls.2021.650926