[1]

Lian Y, Li X, Lan Y, Li Z, Lin X, et al. 2023. Bibliometric and visual analysis in the field of tea in cancer from 2013 to 2023. Frontiers in Oncology 13:1296511

doi: 10.3389/fonc.2023.1296511
[2]

Parish M, Massoud G, Hazimeh D, Segars J, Islam MS. 2023. Green tea in reproductive cancers: could treatment be as simple? Cancers 15:862

doi: 10.3390/cancers15030862
[3]

Hung SW, Li Y, Chen X, Chu KO, Zhao Y, et al. 2022. Green tea epigallocatechin-3-gallate regulates autophagy in male and female reproductive cancer. Frontiers in Pharmacology 13:906746

doi: 10.3389/fphar.2022.906746
[4]

González Arbeláez LF, Pardo AC, Fantinelli JC, Schinella GR, Mosca SM, et al. 2018. Cardioprotection and natural polyphenols: an update of clinical and experimental studies. Food & Function 9:6130−46

doi: 10.1039/C8FO01307A
[5]

Lecour S, Lamont KT. 2011. Natural polyphenols and cardioprotection. Mini-Reviews in Medicinal Chemistry 11:1191−99

doi: 10.2174/13895575111091191
[6]

Wang ZM, Zhou B, Wang YS, Gong QY, Wang QM, et al. 2011. Black and green tea consumption and the risk of coronary artery disease: a meta-analysis. The American Journal of Clinical Nutrition 93:506−15

doi: 10.3945/ajcn.110.005363
[7]

Luo K, Ma C, Xing S, An Y, Feng J, et al. 2020. White tea and its active polyphenols lower cholesterol through reduction of very-low-density lipoprotein production and induction of LDLR expression. Biomedicine & Pharmacotherapy 127:110146

doi: 10.1016/j.biopha.2020.110146
[8]

Pan L, Lu Y, Dai S, Tang X, Xiong L, et al. 2023. The role of cholesterol in modifying the lipid-lowering effects of Fuzhuan brick-tea in Caenorhabditis elegans via SBP-1/SREBP. Food Science and Human Wellness 12:2297−305

doi: 10.1016/j.fshw.2023.03.033
[9]

Thompson AS, Jennings A, Bondonno NP, Tresserra-Rimbau A, Parmenter BH, et al. 2024. Higher habitual intakes of flavonoids and flavonoid-rich foods are associated with a lower incidence of type 2 diabetes in the UK Biobank cohort. Nutrition & Diabetes 14:32

doi: 10.1038/s41387-024-00288-0
[10]

Cho SY, Park PJ, Shin HJ, Kim YK, Shin DW, et al. 2007. (−)-Catechin suppresses expression of Kruppel-like factor 7 and increases expression and secretion of adiponectin protein in 3T3-L1 cells. American Journal of Physiology-Endocrinology and Metabolism 292:E1166−E1172

doi: 10.1152/ajpendo.00436.2006
[11]

Kan Z, Wang Y, Chen Q, Tang X, Thompson HJ, et al. 2021. Green tea suppresses amyloid β levels and alleviates cognitive impairment by inhibiting APP cleavage and preventing neurotoxicity in 5XFAD mice. Molecular Nutrition & Food Research 65:2100626

doi: 10.1002/mnfr.202100626
[12]

Zhuang J, Dai X, Zhu M, Zhang S, Dai Q, et al. 2020. Evaluation of astringent taste of green tea through mass spectrometry-based targeted metabolic profiling of polyphenols. Food Chemistry 305:125507

doi: 10.1016/j.foodchem.2019.125507
[13]

Scharbert S, Holzmann N, Hofmann T. 2004. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. Journal of Agricultural and Food Chemistry 52:3498−508

doi: 10.1021/jf049802u
[14]

Ma W, Guo A, Zhang Y, Wang H, Liu Y, et al. 2014. A review on astringency and bitterness perception of tannins in wine. Trends in Food Science & Technology 40:6−19

doi: 10.1016/j.jpgs.2014.08.001
[15]

Guerreiro C, Rinaldi A, Brandão E, de Jesus M, Gonçalves L, et al. 2024. A look upon the adsorption of different astringent agents to oral models: understanding the contribution of alternative mechanisms in astringency. Food Chemistry 448:139153

doi: 10.1016/j.foodchem.2024.139153
[16]

Xia S, Li Y, Xia Q, Zhang X, Huang Q. 2015. Glycosylation of bovine serum albumin via Maillard reaction prevents epigallocatechin-3-gallate-induced protein aggregation. Food Hydrocolloids 43:228−35

doi: 10.1016/j.foodhyd.2014.05.022
[17]

Schwarz B, Hofmann T. 2008. Is there a direct relationship between oral astringency and human salivary protein binding? European Food Research and Technology 227:1693−98

doi: 10.1007/s00217-008-0895-x
[18]

Jiang X, Liu Y, Li W, Zhao L, Meng F, et al. 2013. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8:e62315

doi: 10.1371/journal.pone.0062315
[19]

Sun MF, Jiang CL, Kong YS, Luo JL, Yin P, et al. 2022. Recent advances in analytical methods for determination of polyphenols in tea: a comprehensive review. Foods 11:1425

doi: 10.3390/foods11101425
[20]

Jiang X, Liu Y, Wu Y, Tan H, Meng F, et al. 2015. Analysis of accumulation patterns and preliminary study on the condensation mechanism of proanthocyanidins in the tea plant [Camellia sinensis]. Scientific Reports 5:8742

doi: 10.1038/srep08742
[21]

Zhang W, Zhang Y, Qiu H, Guo Y, Wan H, et al. 2020. Genome assembly of wild tea tree DASZ reveals pedigree and selection history of tea varieties. Nature Communications 11:3719

doi: 10.1038/s41467-020-17498-6
[22]

Liao Y, Fu X, Zhou H, Rao W, Zeng L, et al. 2019. Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry. Food Chemistry 292:204−10

doi: 10.1016/j.foodchem.2019.04.055
[23]

Wang W, Zhou Y, Wu Y, Dai X, Liu Y, et al. 2018. Insight into catechins metabolic pathways of Camellia sinensis based on genome and transcriptome analysis. Journal of Agricultural and Food Chemistry 66:4281−93

doi: 10.1021/acs.jafc.8b00946
[24]

Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA. 2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396−99

doi: 10.1126/science.1078540
[25]

Tanner GJ, Francki KT, Abrahams S, Watson JM, Larkin PJ, et al. 2003. Proanthocyanidin biosynthesis in plants - Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. Journal of Biological Chemistry 278:31647−56

doi: 10.1074/jbc.M302783200
[26]

Wang P, Liu Y, Zhang L, Wang W, Hou H, et al. 2020. Functional demonstration of plant flavonoid carbocations proposed to be involved in the biosynthesis of proanthocyanidins. The Plant Journal 101:18−36

doi: 10.1111/tpj.14515
[27]

Wang P, Zhang L, Jiang X, Dai X, Xu L, et al. 2018. Evolutionary and functional characterization of leucoanthocyanidin reductases from Camellia sinensis. Planta 247:139−54

doi: 10.1007/s00425-017-2771-z
[28]

Liu Y, Gao L, Xia T, Zhao L. 2009. Investigation of the site-specific accumulation of catechins in the tea plant (Camellia sinensis (L.) O. Kuntze) via Vanillin-HCl staining. Journal of Agricultural and Food Chemistry 57:10371−76

doi: 10.1021/jf902614n
[29]

Liu Y, Gao L, Liu L, Yang Q, Lu Z, et al. 2012. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). Journal of Biological Chemistry 287:44406−17

doi: 10.1074/jbc.M112.403071
[30]

Cui L, Yao S, Dai X, Yin Q, Liu Y, et al. 2016. Identification of UDP-glycosyltransferases involved in the biosynthesis of astringent taste compounds in tea (Camellia sinensis). Journal of Experimental Botany 67:2285−97

doi: 10.1093/jxb/erw053
[31]

Mittasch J, Böttcher C, Frolova N, Bönn M, Milkowski C. 2014. Identification of UGT84A13 as a candidate enzyme for the first committed step of gallotannin biosynthesis in pedunculate oak (Quercus robur). Phytochemistry 99:44−51

doi: 10.1016/j.phytochem.2013.11.023
[32]

Yao S, Liu Y, Zhuang J, Zhao Y, Dai X, et al. 2022. Insights into acylation mechanisms: co-expression of serine carboxypeptidase-like acyltransferases and their non-catalytic companion paralogs. The Plant Journal 111:117−33

doi: 10.1111/tpj.15782
[33]

Zhao Y, Yao S, Zhang X, Wang Z, Jiang C, et al. 2023. Flavan-3-ol galloylation-related functional gene cluster and the functional diversification of SCPL paralogs in Camellia sp. Journal of Agricultural and Food Chemistry 71:488−98

doi: 10.1021/acs.jafc.2c06433
[34]

Dai X, Liu Y, Zhuang J, Yao S, Liu L, et al. 2020. Discovery and characterization of tannase genes in plants: roles in hydrolysis of tannins. New Phytologist 226:1104−16

doi: 10.1111/nph.16425
[35]

Chen Y, Jiang C, Yin S, Zhuang J, Zhao Y, et al. 2023. New insights into the function of plant tannase with promiscuous acyltransferase activity. The Plant Journal 113:576−94

doi: 10.1111/tpj.16069
[36]

Wang L, Lei T, Han G, Yue J, Zhang X, et al. 2021. The chromosome-scale reference genome of Rubus chingii Hu provides insight into the biosynthetic pathway of hydrolyzable tannins. The Plant Journal 107:1466−77

doi: 10.1111/tpj.15394
[37]

Wang Z, Chen X, Zhao Y, Jin D, Jiang C, et al. 2024. A serine carboxypeptidase-like acyltransferase catalyzes consecutive four-step reactions of hydrolyzable tannin biosynthesis in Camellia oleifera. The Plant Journal 119:1299−312

doi: 10.1111/tpj.16849
[38]

Xia E, Tong W, Hou Y, An Y, Chen L, et al. 2020. The reference genome of tea plant and resequencing of 81 diverse accessions provide insights into its genome evolution and adaptation. Molecular Plant 13:1013−26

doi: 10.1016/j.molp.2020.04.010
[39]

Akagi T, Suzuki Y, Ikegami A, Kamitakahara H, Takano T, et al. 2010. Condensed tannin composition analysis in persimmon (Diospyros kaki Thunb.) fruit by acid catalysis in the presence of excess phloroglucinol. Journal of the Japanese Society for Horticultural Science 79:275−81

doi: 10.2503/jjshs1.79.275
[40]

Kalili KM, Vestner J, Stander MA, de Villiers A. 2013. Toward unraveling grape tannin composition: application of online hydrophilic interaction chromatography × reversed-phase liquid chromatography-time-of-flight mass spectrometry for grape seed analysis. Analytical Chemistry 85:9107−15

doi: 10.1021/ac401896r
[41]

Jiao T, Huang Y, Wu Y, Jiang T, Li T, et al. 2023. Functional diversity of subgroup 5 R2R3-MYBs promoting proanthocyanidin biosynthesis and their key residues and motifs in tea plant. Horticulture Research 10:uhad135

doi: 10.1093/hr/uhad135
[42]

Jiang X, Huang K, Zheng G, Hou H, Wang P, et al. 2018. CsMYB5a and CsMYB5e from Camellia sinensis differentially regulate anthocyanin and proanthocyanidin biosynthesis. Plant Science 270:209−20

doi: 10.1016/j.plantsci.2018.02.009
[43]

Li Z, Han Y, Li X, Zhao J, Wang N, et al. 2024. The phosphorylation of a WD40-repeat protein negatively regulates flavonoid biosynthesis in Camellia sinensis under drought stress. Horticulture Research 11:uhae136

doi: 10.1093/hr/uhae136
[44]

Zhao L, Gao L, Wang H, Chen X, Wang Y, et al. 2013. The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis. Functional & Integrative Genomics 13:75−98

doi: 10.1007/s10142-012-0301-4
[45]

Liu Y, Hou H, Jiang X, Wang P, Dai X, et al. 2018. A WD40 repeat protein from Camellia sinensis regulates anthocyanin and proanthocyanidin accumulation through the formation of MYB-bHLH-WD40 ternary complexes. International Journal of Molecular Sciences 19:1686

doi: 10.3390/ijms19061686
[46]

Han M, Lin S, Zhu B, Tong W, Xia E, et al. 2024. Dynamic DNA methylation regulates season-dependent secondary metabolism in the new shoots of tea plants. Journal of Agricultural and Food Chemistry 72:3984−97

doi: 10.1021/acs.jafc.3c08568
[47]

Wang NN, Xiu KY, Deng M, Liu QY, Jin DD, et al. 2024. Effects of phosphorylation on CsTT12 transport function: a comparative phosphoproteomic analysis of flavonoid biosynthesis in tea plants (Camellia sinensis). The Plant Journal 120:2420−36

doi: 10.1111/tpj.17120
[48]

Xing D, Jin D, Zheng T, Ruan H, Chen X, et al. 2024. CsMIEL1 effectively inhibits the accumulation of anthocyanins under low temperatures in tea plants (Camellia sinensis). Plant Physiology and Biochemistry 211:108726

doi: 10.1016/j.plaphy.2024.108726
[49]

Ma G, Li M, Wu Y, Jiang C, Chen Y, et al. 2024. Camellia sinensis CsMYB4a participates in regulation of stamen growth by interaction with auxin signaling transduction repressor CsAUX/IAA4. The Crop Journal 12:188−201

doi: 10.1016/j.cj.2023.11.006
[50]

Li T, Wang S, Shi D, Fang W, Jiang T, et al. 2023. Phosphate deficiency induced by infection promotes synthesis of anthracnose-resistant anthocyanin-3-O-galactoside phytoalexins in the Camellia sinensis plant. Horticulture Research 10:uhad222

doi: 10.1093/hr/uhad222
[51]

Chen Y, Wang Z, Gao T, Huang Y, Li T, et al. 2024. Deep learning and targeted metabolomics-based monitoring of chewing insects in tea plants and screening defense compounds. Plant, Cell & Environment 47:698−713

doi: 10.1111/pce.14749
[52]

Sun Y, Zhou J, Guo J. 2021. Advances in the knowledge of adaptive mechanisms mediating abiotic stress responses in Camellia sinensis. Frontiers in Bioscience 26:1714−22

doi: 10.52586/5063
[53]

Wang Y, Gao L, Shan Y, Liu Y, Tian Y, et al. 2012. Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 141:7−16

doi: 10.1016/j.scienta.2012.04.013
[54]

Ye JH, Lv YQ, Liu SR, Jin J, Wang YF, et al. 2021. Effects of light intensity and spectral composition on the transcriptome profiles of leaves in shade grown tea plants (Camellia sinensis L.) and regulatory network of flavonoid biosynthesis. Molecules 26:5836

doi: 10.3390/molecules26195836
[55]

Qian Y, Zhang S, Yao S, Xia J, Li Y, et al. 2018. Effects of vitro sucrose on quality components of tea plants (Camellia sinensis) based on transcriptomic and metabolic analysis. BMC Plant Biology 18:121

doi: 10.1186/s12870-018-1335-0
[56]

Fu Z, Jiang X, Kong D, Chen Y, Zhuang J, et al. 2022. Flavonol−aluminum complex formation: enhancing aluminum accumulation in tea plants. Journal of Agricultural and Food Chemistry 70:14096−108

doi: 10.1021/acs.jafc.2c04963
[57]

Fu Z, Jiang X, Li W, Shi Y, Lai S, et al. 2020. Proanthocyanidin-aluminum complexes improve aluminum resistance and detoxification of Camellia sinensis. Journal of Agricultural and Food Chemistry 68:7861−69

doi: 10.1021/acs.jafc.0c01689
[58]

Jiang X, Lai S, Kong D, Hou X, Shi Y, et al. 2023. Al-induced CsUGT84J2 enhances flavonol and auxin accumulation to promote root growth in tea plants. Horticulture Research 10:uhad095

doi: 10.1093/hr/uhad095
[59]

Wang P, Ma G, Zhang L, Li Y, Fu Z, et al. 2019. A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis). Journal of Agricultural and Food Chemistry 67:1418−28

doi: 10.1021/acs.jafc.8b06207
[60]

Wang Y, Gao L, Wang Z, Liu Y, Sun M, et al. 2012. Light-induced expression of genes involved in phenylpropanoid biosynthetic pathways in callus of tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 133:72−83

doi: 10.1016/j.scienta.2011.10.017
[61]

Huang F, Lei Y, Duan J, Kang Y, Luo Y, et al. 2024. Investigation of heat stress responses and adaptation mechanisms by integrative metabolome and transcriptome analysis in tea plants (Camellia sinensis). Scientific Reports 14:10023

doi: 10.1038/s41598-024-60411-0
[62]

Lv YQ, Li D, Wu LY, Zhu YM, Ye Y, et al. 2022. Sugar signal mediates flavonoid biosynthesis in tea leaves. Horticulture Research 9:uhac049

doi: 10.1093/hr/uhac049