[1]

Jade SS, Gaikwad VN, Jadhav SP, Takawale PS, Bahulikar RA. 2024. Phenotypic variations in M2 generation by ethyl methanesulfonate mutagenesis in lucerne (Medicago sativa L.). Crop & Pasture Science 75:CP23047

doi: 10.1071/CP23047
[2]

Takawale PS, Jade SS, Bahulikar RA, Desale JS. 2019. Diversity in Lucerne (Medicago sativa L.) germplasm for morphology, yield and molecular markers and their correlations. Indian Journal of Genetics and Plant Breeding 79:453−59

[3]

Zhang XY, Shi SL, Li XL, Li CN, Zhang CM, et al. 2021. Effects of autotoxicity on alfalfa (Medicago sativa): seed germination, oxidative damage and lipid peroxidation of seedlings. Agronomy 11:1027

doi: 10.3390/agronomy11061027
[4]

Musial JM, Basford KE, Irwin JAG. 2002. Analysis of genetic diversity within Australian lucerne cultivars and implications for future genetic improvement. Australian Journal of Agricultural Research 53:629−36

doi: 10.1071/AR01178
[5]

Segovia-Lerma A, Cantrell RG, Conway JM, Ray IM. 2003. AFLP-based assessment of genetic diversity among nine alfalfa germplasms using bulk DNA templates. Genome 46:51−58

doi: 10.1139/G02-100
[6]

Maureira IJ, Ortega F, Campos H, Osborn TC. 2004. Population structure and combining ability of diverse Medicago sativa germplasms. Theoretical and Applied Genetics 109:775−82

doi: 10.1007/s00122-004-1677-x
[7]

Flajoulot S, Ronfort J, Baudouin P, Barre P, Huguet T, et al. 2005. Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theoretical and Applied Genetics 111:1420−29

doi: 10.1007/s00122-005-0074-4
[8]

Vandemark G, Hughes T, Larsen R. 2005. Genetic similarities between alfalfa cultivars based on sequence related amplified polymorphism (SRAP) DNA markers. Proc. Plant & Animal Genomes XIII Conference, San Diego, CA, 2005.

[9]

Abdollahi Mandoulakani B, Azizi H. 2018. Identification of ISSR markers associated with morphological traits in cultivated alfalfa (Medicago sativa L.) populations. Cellular and Molecular Research 27:260−68

[10]

Bolourchian F, Farshadfar M, Safari H, Shirvani H. 2013. Evaluation of genetic diversity in different genotypes of (Medicago sativa L.) using ISSR markers. International Journal of Farming and Allied Sciences 2:955−60

[11]

Soltani A, Khodarahmpour Z, Jafari AA, Nakhjavan S. 2012. Selection of alfalfa (Medicago sativa L.) cultivars for salt stress tolerance using germination indices. African Journal of Biotechnology 11:7899−905

doi: 10.5897/AJB11.3977
[12]

Campanelli A, Ruta C, Morone-Fortunato I, De Mastro G. 2013. Alfalfa (Medicago sativa L.) clones tolerant to salt stress: in vitro selection. Central European Journal of Biology 8:765−76

doi: 10.2478/s11535-013-0194-1
[13]

Mbarki S, Skalicky M, Vachova P, Hajihashemi S, Jouini L, et al. 2020. Comparing salt tolerance at seedling and germination stages in local populations of Medicago ciliaris L. to Medicago intertexta L. and Medicago scutellata L. Plants 9:526

doi: 10.3390/plants9040526
[14]

Babakhani B, Khavari-Nejad RA, Hassan S, Fahimi H, Saadatmand S. 2011. Biochemical responses of alfalfa (Medicago sativa L.) cultivars subjected to NaCl salinity stress. African Journal of Biotechnology 10:11433−41

doi: 10.5897/AJB11.594
[15]

Khan MAH, Baset Mia MA, Quddus MA, Sarker KK, Rahman M, et al. 2022. Salinity-induced physiological changes in pea (Pisum sativum L.): germination rate, biomass accumulation, relative water content, seedling vigor and salt tolerance index. Plants 11:3493

doi: 10.3390/plants11243493
[16]

Magray JA, Sharma DP. 2022. Seed germination in lucerne (Medicago sativa L. cv Ek Sali) under NaCl stress at winter and summer temperatures. Research Journal of Agricultural Sciences 13:329−33

[17]

Kumar P, Sharma PK. 2020. Soil salinity and food security in India. Frontiers in Sustainable Food Systems 4:533781

doi: 10.3389/fsufs.2020.533781
[18]

Carillo P, Annunziata MG, Pontecorvo G, Fuggi A, Woodrow P. 2011. Salinity stress and salt tolerance. In Abiotic Stress in Plants - Mechanisms and Adaptations, eds Shanker A, Venkateswarlu B. UK: InTech. 1:21−38. doi: 10.5772/22331

[19]

Niste M, Vidican R, Stoian V, Berindean I, Criste A, et al. 2015. The effect of salinity stress on seed germination of red clover (Trifolium pratense L.) and alfalfa (Medicago sativa L.) varieties. Bulletin USAMV series Agriculture 72:447−52

[20]

Zhang H, Li X, Nan X, Sun G, Sun M, et al. 2017. Alkalinity and salinity tolerance during seed germination and early seedling stages of three alfalfa (Medicago sativa L.) cultivars. Legume Research-An International Journal 40:853−58

doi: 10.18805/lr.v0i0.8401
[21]

Tilaki GAD, Behtari B, Behtari B. 2009. Effect of salt and water stress on the germination of alfalfa (Medicago sativa L.) seed. Povolzhskiy Journal of Ecology 2:158−64

[22]

Al-Saady NA, Khan AJ, Lakshmi R. 2013. A study on germination rate, dry matter weight and amylase activity of (Medicago sativa L.) under induced NaCl stress. Advances in Crop Science and Technology 1:108

doi: 10.4172/2329-8863.1000108
[23]

Yu R, Wang G, Yu X, Li L, Li C, et al. 2021. Assessing alfalfa (Medicago sativa L.) tolerance to salinity at seedling stage and screening of the salinity tolerance traits. Plant Biology 23:664−74

doi: 10.1111/plb.13271
[24]

Murray MG, Thompson WF. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8:4321−26

doi: 10.1093/nar/8.19.4321
[25]

Nimbalkar SD, Jade SS, Kauthale VK, Agale S, Bahulikar RA. 2018. Genetic diversity in the candidate trees of Madhuca indica J. F. Gmel. (Mahua) revealed by inter-simple sequence repeats (ISSRs). 3 Biotech 8:143

doi: 10.1007/s13205-018-1168-4
[26]

Sepehri A, Najari S, Rouhi HR. 2015. Seed priming to overcome salinity stress in Persian cultivars of alfalfa (Medicago sativa L.). Notulae Scientia Biologicae 7:96−101

doi: 10.15835/nsb.7.1.9426
[27]

Farissi M, Bouizgaren A, Faghire M, Bargaz A, Ghoulam C. 2011. Agro-physiological responses of Moroccan alfalfa (Medicago sativa L.) populations to salt stress during germination and early seedling stages. Seed Science and Technology 39:389−401

doi: 10.15258/sst.2011.39.2.11
[28]

Brenchley JL, Probert RJ. 1998. Seed germination responses to some environmental factors in the seagrass Zostera capricorni from eastern Australia. Aquatic Botany 62:177−88

doi: 10.1016/S0304-3770(98)00089-8
[29]

Nagy S, Poczai P, Cernák I, Gorji AM, Hegedűs G, et al. 2012. PICcalc: an online program to calculate polymorphic information content for molecular genetic studies. Biochemical Genetics 50:670−72

doi: 10.1007/s10528-012-9509-1
[30]

Hammer Ø, Harper DAT, Ryan PD. 2001. Past: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:art. 4

[31]

Touil L, Guesmi F, Fares K, Zagrouba C, Ferchichi A. 2008. Genetic diversity of some Mediterranean populations of the cultivated alfalfa (Medicago sativa L.) using SSR markers. Pakistan Journal of Biological Sciences 11:1923−28

doi: 10.3923/pjbs.2008.1923.1928
[32]

Habibi B, Farshadfar M, Safari H. 2012. Evaluation of genetic diversity in 18 genotypes of alfalfa (Medicago sativa) using of molecular ISSR markers. International Journal of Agriculture and Crop Sciences 4:1573−78

[33]

Alzahrani OR, Ali Alshehri M, Alasmari A, Ibrahim SD, Oyouni AA, et al. 2023. Evaluation of genetic diversity among Saudi Arabian and Egyptian cultivars of alfalfa (Medicago sativa L.) using ISSR and SCoT markers. Journal of Taibah University for Science 17:2194187

doi: 10.1080/16583655.2023.2194187
[34]

Annisa, Hafzari R, Setiawati T, Irawan B, Kusmoro J. 2019. Evaluation of RAPD markers for molecular identification of five bamboo genera from Indonesia. Folia Forestalia Polonica 61:255−66

doi: 10.2478/ffp-2019-0025
[35]

Petolescu C, Sarac I, Popescu S, Tenche-Constantinescu AM, Petrescu I, et al. 2024. Assessment of genetic diversity in alfalfa using DNA polymorphism analysis and statistical tools. Plants 13:2853

doi: 10.3390/plants13202853
[36]

Bhattarai S, Biswas D, Fu YB, Biligetu B. 2020. Morphological, physiological, and genetic responses to salt stress in alfalfa: a review. Agronomy 10:577

doi: 10.3390/agronomy10040577
[37]

Benabderrahim MA, Haddad M, Hamza H, Ferchichi A. 2011. Germination and emergence variability of alfalfa (Medicago sativa L.) landraces collected in Southern Tunisia oases. Spanish Journal of Agricultural Research 9:135−43

doi: 10.5424/sjar/20110901-075-10
[38]

Chérifi K, Boubaker H, Msanda F, Saadi B, Boufous E, Mousadik A. 2011. Variability for salt tolerance during germination in Medicago ciliaris (L.) and Medicago polymorpha (L.). International Research Journal of Plant Science 2:201−08

[39]

Çarpıcı EB, Erdel B. 2016. Determination of responses of different alfalfa (Medicago sativa L. ) varieties to salt stress at germination stage. Journal of Agricultural Sciences 26:61−67

[40]

Aberchane L, Taoufiq K, Elbiari K, Faghire M. 2024. Comparative salt tolerance study of some Moroccan alfalfa varieties during germination and seedling emergence stages. Open Access Library Journal 11:e11112

doi: 10.4236/oalib.1111112
[41]

Caballero-Julián S, López-Baltazar J, Flores-Garivay R, Bermúdez-Guzmán MJ, Michel-López CY. 2024. Effect of saline concentrations and humidity percentage on alfalfa varieties (Medicago sativa L.) from the Mexicali Valley, Mexico. Agro Productividad 17:103−10

doi: 10.32854/agrop.v17i11.3122
[42]

Niu J, Chen Z, Guo Z, Xu N, Sui X, et al. 2022. Exogenous melatonin promotes the growth of alfalfa (Medicago sativa L.) under NaCl stress through multiple pathways. Ecotoxicology and Environmental Safety 242:113938

doi: 10.1016/j.ecoenv.2022.113938
[43]

Wang WB, Kim YH, Lee HS, Kim KY, Deng XP, et al. 2009. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiology and Biochemistry 47:570−77

doi: 10.1016/j.plaphy.2009.02.009
[44]

Wang X, Wei Z, Liu D, Zhao G. 2011. Effects of NaCl and silicon on activities of antioxidative enzymes in roots, shoots and leaves of alfalfa. African Journal of Biotechnology 10:545−49

doi: 10.5897/AJB10.1353
[45]

Song Y, Lv J, Ma Z, Dong W. 2019. The mechanism of alfalfa (Medicago sativa L.) response to abiotic stress. Plant Growth Regulation 89:239−49

doi: 10.1007/s10725-019-00530-1
[46]

Al-Farsi SM, Nawaz A, Anees-ur-Rehman, Nadaf SK, Al-Sadi AM, et al. 2020. Effects, tolerance mechanisms and management of salt stress in lucerne (Medicago sativa). Crop and Pasture Science 71:411−28

doi: 10.1071/CP20033
[47]

Zimisuhara B, Valdiani A, Shaharuddin NA, Qamaruzzaman F, Maziah M. 2015. Structure and principal components analyses reveal an intervarietal fusion in Malaysian mistletoe fig (Ficus deltoidea Jack) populations. International Journal of Molecular Sciences 16:14369−94

doi: 10.3390/ijms160714369
[48]

Chunthaburee S, Dongsansuk A, Sanitchon J, Pattanagul W, Theerakulpisut P. 2016. Physiological and biochemical parameters for evaluation and clustering of rice cultivars differing in salt tolerance at seedling stage. Saudi Journal of Biological Sciences 23:467−77

doi: 10.1016/j.sjbs.2015.05.013
[49]

Li W, Zhang H, Zeng Y, Xiang L, Lei Z, et al. 2020. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Scientific Reports 10:10626

doi: 10.1038/s41598-020-67210-3
[50]

Ali Benabderrahim M, Guiza M, Haddad M. 2020. Genetic diversity of salt tolerance in tetraploid alfalfa (Medicago sativa L.). Acta Physiologiae Plantarum 42:5

doi: 10.1007/s11738-019-2993-8