[1]

Liu Y, Zetter R, Ferguson DK, Zou C. 2008. Lagerstroemia (Lythraceae) pollen from the Miocene of eastern China. Grana 47:262−71

doi: 10.1080/00173130802457255
[2]

Hong S, Wang J, Wang Q, Zhang G, Zhao Y, et al. 2022. Decoding the formation of diverse petal colors of Lagerstroemia indica by integrating the data from transcriptome and metabolome. Frontiers in Plant Science 13:970023

doi: 10.3389/fpls.2022.970023
[3]

Klingenberg M. 2003. Pigments of rat liver microsomes. Archives of Biochemistry and Biophysics 409:2−6

doi: 10.1016/S0003-9861(02)00621-5
[4]

Omura T, Sato R. 1962. A new cytochrome in liver microsomes. The Journal of Biological Chemistry 237:1375−76

doi: 10.1016/S0021-9258(18)60338-2
[5]

Lamb DC, Lei L, Warrilow AGS, Lepesheva GI, Mullins JGL, et al. 2009. The first virally encoded cytochrome p450. Journal of Virology 83:8266−69

doi: 10.1128/JVI.00289-09
[6]

Barnaba C, Ramamoorthy A. 2018. Picturing the membrane-assisted choreography of cytochrome P450 with lipid nanodiscs. ChemPhysChem 19:2603−13

doi: 10.1002/cphc.201800444
[7]

Šrejber M, Navrátilová V, Paloncýová M, Bazgier V, Berka K, et al. 2018. Membrane-attached mammalian cytochromes P450: an overview of the membrane's effects on structure, drug binding, and interactions with redox partners. Journal of Inorganic Biochemistry 183:117−36

doi: 10.1016/j.jinorgbio.2018.03.002
[8]

Werck-Reichhart D, Feyereisen R. 2000. Cytochromes P450: a success story. Genome Biology 1:REVIEWS3003

doi: 10.1186/gb-2000-1-6-reviews3003
[9]

Toda K, Kuroiwa H, Senthil K, Shimada N, Aoki T, et al. 2012. The soybean F3'H protein is localized to the tonoplast in the seed coat hilum. Planta 236:79−89

doi: 10.1007/s00425-012-1590-5
[10]

Nelson D, Werck-Reichhart D. 2011. A P450-centric view of plant evolution. The Plant Journal 66:194−211

doi: 10.1111/j.1365-313X.2011.04529.x
[11]

Jiu S, Xu Y, Wang J, Wang L, Liu X, et al. 2020. The cytochrome P450 monooxygenase inventory of grapevine (Vitis vinifera L.): genome-wide identification, evolutionary characterization and expression analysis. Frontiers in Genetics 11:44

doi: 10.3389/fgene.2020.00044
[12]

Vasav AP, Barvkar VT. 2019. Phylogenomic analysis of cytochrome P450 multigene family and their differential expression analysis in Solanum lycopersicum L. suggested tissue specific promoters. BMC Genomics 20:116

doi: 10.1186/s12864-019-5483-x
[13]

Wei K, Chen H. 2018. Global identification, structural analysis and expression characterization of cytochrome P450 monooxygenase superfamily in rice. BMC Genomics 19:35

doi: 10.1186/s12864-017-4425-8
[14]

Xu W, Bak S, Decker A, Paquette SM, Feyereisen R, et al. 2001. Microarray-based analysis of gene expression in very large gene families: the cytochrome P450 gene superfamily of Arabidopsis thaliana. Gene 272:61−74

doi: 10.1016/S0378-1119(01)00516-9
[15]

Yang J, Li H, Ma R, Chang Y, Qin X, et al. 2022. Genome-wide transcriptome analysis and characterization of the cytochrome P450 flavonoid biosynthesis genes in pigeon pea (Cajanus cajan). Planta 255:120

doi: 10.1007/s00425-022-03896-1
[16]

Zhang S, Wu QR, Zhang HM, Pei ZM, Gao JW. 2021. Genome-wide identification and transcriptomic data exploring of the cytochrome P450 family in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Journal of Plant Interactions 16:136−55

doi: 10.1080/17429145.2021.1909761
[17]

Yang J, Wang G, Ke H, Zhang Y, Ji L, et al. 2019. Genome-wide identification of cyclophilin genes in Gossypium hirsutum and functional characterization of a CYP with antifungal activity against Verticillium dahliae. BMC Plant Biology 19:272

doi: 10.1186/s12870-019-1848-1
[18]

Tanaka Y, Brugliera F. 2013. Flower colour and cytochromes P450. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 368:20120432

doi: 10.1098/rstb.2012.0432
[19]

Holton TA, Brugliera F, Tanaka Y. 1993. Cloning and expression of flavonol synthase from Petunia hybrida. The Plant Journal 4:1003−10

doi: 10.1046/j.1365-313X.1993.04061003.x
[20]

Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, et al. 2007. Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant & Cell Physiology 48:1589−600

doi: 10.1093/pcp/pcm131
[21]

Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, et al. 2017. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. Science Advances 3:e1602785

doi: 10.1126/sciadv.1602785
[22]

Brugliera F, Barri-Rewell G, Holton TA, Mason JG. 1999. Isolation and characterization of a flavonoid 3'-hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. The Plant Journal 19:441−51

doi: 10.1046/j.1365-313X.1999.00539.x
[23]

Ballester AR, Molthoff J, de Vos R, te Lintel Hekkert B, Orzaez D, et al. 2010. Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiology 152:71−84

doi: 10.1104/pp.109.147322
[24]

Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, et al. 2006. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin. BMC Genomics 7:12

doi: 10.1186/1471-2164-7-12
[25]

Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, et al. 2021. Pfam: the protein families database in 2021. Nucleic Acids Research 49:D412−D419

doi: 10.1093/nar/gkaa913
[26]

Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, et al. 2018. HMMER web server: 2018 update. Nucleic Acids Research 46:W200−W204

doi: 10.1093/nar/gky448
[27]

Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, et al. 1999. Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology 112:531−52

doi: 10.1385/1-59259-584-7:531
[28]

Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research 35:W585−W587

doi: 10.1093/nar/gkm259
[29]

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33:1870−74

doi: 10.1093/molbev/msw054
[30]

Subramanian B, Gao S, Lercher MJ, Hu S, Chen W. 2019. Evolview v3: a webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Research 47:W270−W275

doi: 10.1093/nar/gkz357
[31]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[32]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[33]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[34]

Qiao X, Li Q, Yin H, Qi K, Li L, et al. 2019. Gene duplication and evolution in recurring polyploidization-diploidization cycles in plants. Genome Biology 20:38

doi: 10.1186/s13059-019-1650-2
[35]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[36]

Rozewicki J, Li S, Amada KM, Standley DM, Katoh K. 2019. MAFFT-DASH: integrated protein sequence and structural alignment. Nucleic Acids Research 47:W5−W10

doi: 10.1093/nar/gkz342
[37]

Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189−91

doi: 10.1093/bioinformatics/btp033
[38]

Chen M, Wang Q, Li Y, Gao L, Lv F, et al. 2021. Candidate reference genes for quantitative gene expression analysis in Lagerstroemia indica. Molecular Biology Reports 48:1677−85

doi: 10.1007/s11033-021-06209-z
[39]

Viegas P, Mathews H, Bhatia CR, Notani NK. 1987. Monohybrid and dihybrid segregations in the progenies of tobacco transformed for kanamycin resistance with a Ti-vector system. Journal of Genetics 66:25−31

doi: 10.1007/BF02934453
[40]

Nelson DR, Zeldin DC, Hoffman SMG, Maltais LJ, Wain HM, et al. 2004. Comparison of cytochrome P450 (CYP) genes from the mouse and human genomes, including nomenclature recommendations for genes, Pseudogenes and alternative-splice variants. Pharmacogenetics 14:1−18

doi: 10.1097/00008571-200401000-00001
[41]

Babu PR, Rao KV, Reddy VD. 2013. Structural organization and classification of cytochrome P450 genes in flax (Linum usitatissimum L.). Gene 513:156−62

doi: 10.1016/j.gene.2012.10.040
[42]

Ma B, Luo Y, Jia L, Qi X, Zeng Q, et al. 2014. Genome-wide identification and expression analyses of cytochrome P450 genes in mulberry (Morus notabilis). Journal of Integrative Plant Biology 56:887−901

doi: 10.1111/jipb.12141
[43]

Menéndez-Perdomo IM, Facchini PJ. 2018. Benzylisoquinoline alkaloids biosynthesis in sacred lotus. Molecules 23:2899

doi: 10.3390/molecules23112899
[44]

Mizutani M, Ohta D. 2010. Diversification of P450 genes during land plant evolution. Annual Review of Plant Biology 61:291−315

doi: 10.1146/annurev-arplant-042809-112305
[45]

Sun W, Ma Z, Liu M. 2020. Cytochrome P450 family: genome-wide identification provides insights into the rutin synthesis pathway in Tartary buckwheat and the improvement of agricultural product quality. International Journal of Biological Macromolecules 164:4032−45

doi: 10.1016/j.ijbiomac.2020.09.008
[46]

Cannon SB, Mitra A, Baumgarten A, Young ND, May G. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology 4:10

doi: 10.1186/1471-2229-4-10
[47]

Paquette SM, Bak S, Feyereisen R. 2000. Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA and Cell Biology 19:307−17

doi: 10.1089/10445490050021221
[48]

Xu J, Wang XY, Guo WZ. 2015. The cytochrome P450 superfamily: key players in plant development and defense. Journal of Integrative Agriculture 14:1673−86

doi: 10.1016/S2095-3119(14)60980-1
[49]

Zhang Y, Butelli E, Martin C. 2014. Engineering anthocyanin biosynthesis in plants. Current Opinion in Plant Biology 19:81−90

doi: 10.1016/j.pbi.2014.05.011
[50]

Grotewold E. 2006. The genetics and biochemistry of floral pigments. Annual Review of Plant Biology 57:761−80

doi: 10.1146/annurev.arplant.57.032905.105248
[51]

Miyahara T, Hamada A, Okamoto M, Hirose Y, Sakaguchi K, et al. 2016. Identification of flavonoid 3'-hydroxylase in the yellow flower of Delphinium zalil. Journal of Plant Physiology 202:92−96

doi: 10.1016/j.jplph.2016.07.013
[52]

Wang YS, Xu YJ, Gao LP, Yu O, Wang XZ, et al. 2014. Functional analysis of flavonoid 3',5'-hydroxylase from tea plant (Camellia sinensis): critical role in the accumulation of catechins. BMC Plant Biology 14:347

doi: 10.1186/s12870-014-0347-7
[53]

Bogs J, Ebadi A, McDavid D, Robinson SP. 2006. Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiology 140:279−91

doi: 10.1104/pp.105.073262
[54]

Sun Y, Huang H, Meng L, Hu K, Dai SL. 2013. Isolation and functional analysis of a homolog of flavonoid 3',5'-hydroxylase gene from Pericallis × hybrida. Physiologia Plantarum 149:151−59

doi: 10.1111/ppl.12034