[1]

Barchenger DW, Naresh P, Kumar S. 2019. Genetic resources of Capsicum. In The Capsicum Genome, eds Ramchiary N, Kole C. Cham: Springer. pp 9–23. doi: 10.1007/978-3-319-97217-6_2

[2]

Pathirana R. 2013. Peppers: vegetable and spice capsicums. 2nd edition, by Paul W. Bosland and Eric J. Votava. New Zealand Journal of Crop and Horticultural Science 41(2):102−3

doi: 10.1080/01140671.2012.745161
[3]

Duranova H, Valkova V, Gabriny L. 2022. Chili peppers (Capsicum spp.): the spice not only for cuisine purposes: an update on current knowledge. Phytochemistry Reviews 21(4):1379−413

doi: 10.1007/s11101-021-09789-7
[4]

Liu Z, Cai S, Zhang S, Xiao Y, Devahastin S, et al. 2023. A systematic review on fermented chili pepper products: Sensorial quality, health benefits, fermentation microbiomes, and metabolic pathways. Trends in Food Science & Technology 141:104189

doi: 10.1016/j.jpgs.2023.104189
[5]

Cirlini M, Luzzini G, Morini E, Folloni S, Ranieri R, et al. 2019. Evaluation of the volatile fraction, pungency and extractable color of different Italian Capsicum annuum cultivars designed for food industry. European Food Research and Technology 245(12):2669−78

doi: 10.1007/s00217-019-03378-x
[6]

Kumar S, Kumar R, Singh J. 2006. Cayenne/American pepper. In Handbook of Herbs and Spices, ed. Peter KV. UK: Woodhead Publishing. Volume 3. pp. 299−312. doi: 10.1533/9781845691717.3.299

[7]

Kim MS, Han YJ, Tripathi S, Kwak J, Kwon JK, et al. 2023. Comparison of regeneration conditions in seven pepper (Capsicum annuum L.) varieties. Korean Journal of Plant Resources 36(5):527−39

doi: 10.7732/kjpr.2023.36.5.527
[8]

Shu H, Zhang Y, He C, Altaf MA, Hao Y, et al. 2022. Establishment of in vitro regeneration system and molecular analysis of early development of somatic callus in Capsicum chinense and Capsicum baccatum. Frontiers in Plant Science 13:1025497

doi: 10.3389/fpls.2022.1025497
[9]

Gunay AL, Rao PS. 1978. In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper (Capsicum). Plant Science Letters 11:365−72

doi: 10.1016/0304-4211(78)90024-X
[10]

Ochoa-Alejo N, Ireta-Moreno L. 1990. Cultivar differences in shoot-forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro. Scientia Horticulturae 42:21−28

doi: 10.1016/0304-4238(90)90144-4
[11]

Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N. 2010. Chilli peppers—a review on tissue culture and transgenesis. Biotechnology Advances 28(1):35−48

doi: 10.1016/j.biotechadv.2009.08.005
[12]

Martínez-López M, García-Pérez A, Gimeno-Páez E, Prohens J, Vilanova S, et al. 2021. Screening of suitable plant regeneration protocols for several Capsicum spp. through direct organogenesis. Horticulturae 7(9):261

doi: 10.3390/horticulturae7090261
[13]

Akther S, Banu TA, Khan S, Akter S, Habib A, et al. 2020. Micropropagation of two varieties of bell pepper (Capsicum annuum L.). Plant Tissue Culture and Biotechnology 30(2):267−75

doi: 10.3329/ptcb.v30i2.50696
[14]

İzgü T, İlbi H, Mendi YY. 2020. Optimization of plant regeneration in different pepper (Capsicum annuum L.) lines. Turkish Journal of Agriculture - Food Science and Technology 8(2):471−77

doi: 10.24925/turjaf.v8i2.471-477.3207
[15]

Mandal M. 2022. Effect of plant growth regulators in the propagation of seedling explant Capsicum annuum L. var. annuum. Trakia Journal of Sciences 20(4):354−62

doi: 10.15547/tjs.2022.04.011
[16]

Shafiq M, Ashraf T, Mushtaq S, Anjum N, Asim M, et al. 2022. Response of Different (Capsicum annuum L.) genotypes for callus induction, plant regeneration and plant transformation. Sarhad Journal of Agriculture 38(4):1332−34

doi: 10.17582/journal.sja/2022/38.4.1332.1343
[17]

Jha K, Choudhary PK, Agarwal A. 2023. Optimizing androgenic embryo regeneration and chromosome doubling of haploid plants for sweet pepper (Capsicum annuum var. Grossum L.). Journal of Coastal Life Medicine 11(2):1326−34

[18]

Dabauza M, Peña L. 2001. High efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. Plant Growth Regulation 33:221−29

doi: 10.1023/A:1017585407870
[19]

do Rêgo ER, do Rêgo MM, Finger FL. 2016. Tissue culture of Capsicum spp. In Production and Breeding of Chilli Peppers (Capsicum spp.). Cham: Springer. pp. 97–127. doi: 10.1007/978-3-319-06532-8_6

[20]

Pijeira-Fernández G, Santana-Buzzy N. 2024. Capsicum recalcitrance: physiological and molecular challenges of pepper tissue culture. In Vitro Cellular & Developmental Biology - Plant 60:725−41

doi: 10.1007/s11627-024-10445-w
[21]

Orlińska M, Nowaczyk P. 2015. In vitro plant regeneration of 4 Capsicum spp. genotypes using different explant types. Turkish Journal of Biology 39(1):60−68

doi: 10.3906/biy-1403-89
[22]

Gammoudi N, Pedro TS, Ferchichi A, Gisbert C. 2018. Improvement of regeneration in pepper: a recalcitrant species. In Vitro Cellular & Developmental Biology - Plant 54:145−53

doi: 10.1007/s11627-017-9838-1
[23]

Sanatombi K, Sharma GJ. 2008. In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. Biologia Plantarum 52:141−45

doi: 10.1007/s10535-008-0029-0
[24]

Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K. 2011. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. Plant Cell Reports 30(6):1107−15

doi: 10.1007/s00299-011-1018-x
[25]

Kumar RV, Sharma VK, Chattopadhyay B, Chakraborty S. 2012. An improved plant regeneration and Agrobacterium - mediated transformation of red pepper (Capsicum annuum L.). Physiology and Molecular Biology of Plants 18(4):357−64

doi: 10.1007/s12298-012-0132-8
[26]

Li D, Zhao K, Xie B, Zhang B, Luo K. 2003. Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Reports 21(8):785−88

doi: 10.1007/s00299-003-0581-1
[27]

Liu Q, Zhao C, Sun K, Deng Y, Li Z. 2023. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. Molecular Plant 16(3):616−31

doi: 10.1016/j.molp.2023.02.003
[28]

Zhao C, Lou H, Liu Q, Pei S, Liao Q, et al. 2024. Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9. Journal of Integrative Plant Biology 66(10):2079−82

doi: 10.1111/jipb.13741
[29]

Valadez-Bustos MG, Aguado-Santacruz GA, Carrillo-Castañeda G, Aguilar-Rincón VH, Espitia-Rangel E, et al. 2009. In vitro propagation and agronomic performance of regenerated chili pepper (Capsicum spp.) plants from commercially important genotypes. In Vitro Cellular & Developmental Biology - Plant 45:650−58

doi: 10.1007/s11627-009-9193-y
[30]

Khan M, Buneen U, Sajid SN, Nawaz M, Harron H, et al. 2020. Optimization of regeneration protocols of chilies in local cultivars. Biosciences Biotechnology Research Asia 17(1):141−53

doi: 10.13005/bbra/2819
[31]

Ebinuma H, Sugita K, Matsunaga E, Yamakado M. 1997. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proceedings of the National Academy of Sciences of the United States of America 94(6):2117−21

doi: 10.1073/pnas.94.6.2117
[32]

Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators baby boom and wuschel improve monocot transformation. The Plant Cell 28(9):1998−2015

doi: 10.1105/tpc.16.00124
[33]

Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. Nature Biotechnology 38(11):1274−79

doi: 10.1038/s41587-020-0703-0
[34]

Lian Z, Nguyen CD, Liu L, Wang G, Chen J, et al. 2022. Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnology Journal 20(8):1622−35

doi: 10.1111/pbi.13837
[35]

Yang W, Zhai H, Wu F, Deng L, Chao Y, et al. 2024. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 187:3024−3038.e14

doi: 10.1016/j.cell.2024.04.040
[36]

Kumar S, Mehta N, Singh JK, Kumar M, Kumar A. 2017. A protocol for callus induction in chilli genotypes from hypocotyls as explant. International Journal of Current Microbiology and Applied Sciences 6(10):4931−42

doi: 10.20546/ijcmas.2017.610.466
[37]

Ma J, Li Q, Zhang L, Cai S, Liu Y, et al. 2022. High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. Journal of Integrative Plant Biology 64(12):2425−37

doi: 10.1111/jipb.13387
[38]

Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. The Plant Cell 19(1):118−30

doi: 10.1105/tpc.106.047761
[39]

Shams S, Naeem B, Ma L, Li R, Zhang Z, et al. 2024. Developing an optimized protocol for regeneration and transformation in Pepper. Genes 5(8):1018

doi: 10.3390/genes15081018
[40]

Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, et al. 2017. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. The Plant Cell 29(1):54−69

doi: 10.1105/tpc.16.00623
[41]

Hyde CL, Phillips GC. 1996. Silver nitrate promotes shoot development and plant regeneration of Chile pepper (Capsicum annuum L.) via organogenesis. In Vitro - Plant 32:72−80

doi: 10.1007/BF02823134
[42]

Mookkan M, Andy G. 2014. AgNO3 boosted high-frequency shoot regeneration in Vigna mungo (L.) Hepper. Plant Signaling & Behavior 9(10):e972284

doi: 10.4161/psb.32165
[43]

Prem Kumar G, Sivakumar S, Siva G, Vigneswaran M, Senthil Kumar T, et al. 2016. Silver nitrate promotes high-frequency multiple shoot regeneration in cotton (Gossypium hirsutum L.) by inhibiting ethylene production and phenolic secretion. In Vitro Cellular & Developmental Biology - Plant 52:408−18

doi: 10.1007/s11627-016-9782-5
[44]

Debnath AJ, Gangopadhyay G, Basu D, Sikdar SR. 2018. An efficient protocol for in vitro direct shoot organogenesis of Sesamum indicum L. using cotyledon as explant. 3 Biotech 8(3):146

doi: 10.1007/s13205-018-1173-7
[45]

Zanewich KP, Rood SB. 2020. Gibberellins and heterosis in crops and trees: an integrative review and preliminary study with Brassica. Plants 9(2):139

doi: 10.3390/plants9020139
[46]

Bello-Bello JJ, Canto-Flick A, Balam-Uc E, Gómez-Uc E, Robert ML, et al. 2010. Improvement of in vitro proliferation and elongation of habanero pepper shoots (Capsicum chinense Jacq.) by temporary immersion. HortScience 45(7):1093−98

doi: 10.21273/HORTSCI.45.7.1093
[47]

Geng F, Moran R, Day M, Halteman W, Zhang D. 2016. Increasing in vitro shoot elongation and proliferation of 'G.30' and 'G.41' apple by chilling explants and plant growth regulators. HortScience 51(7):899−904

doi: 10.21273/HORTSCI.51.7.899
[48]

Tariq, Dogra V, Sharma P. 2022. Effect of indole butyric acid (IBA) and honey on root parameters of different sized stem cuttings in bell pepper. Himachal Journal of Agricultural Research 47(2−3):256−59

[49]

El-Banna MF, Farag NBB, Massoud HY, Kasem MM. 2023. Exogenous IBA stimulated adventitious root formation of Zanthoxylum beecheyanum K. Koch stem cutting: Histo-physiological and phytohormonal investigation. Plant Physiology and Biochemistry 197:107639

doi: 10.1016/j.plaphy.2023.107639
[50]

Sekhukhune MK, Maila MY. 2024. Exogenous IBA stimulatory effects on root formation of Actinidia deliciosa rootstock and Actinidia arguta male scion stem cuttings. Frontiers in Sustainable Food Systems 8:1461871

doi: 10.3389/fsufs.2024.1461871
[51]

Khan MA, Wang Y, Muhammad B, Uddin S, Saeed A, et al. 2024. Morpho-physiological and phytohormonal changes during the induction of adventitious root development stimulated by exogenous IBA application in Magnolia biondii Pamp. Brazilian Journal of Biology 84(3):255664

doi: 10.1590/1519-6984.255664
[52]

Wang Z, Liu Y, Hu B, Zhu F, Liu F, et al. 2025. Construction of a high-efficiency genetic transformation system in pepper leveraging RUBY and CaREF1. Acta Horticulturae Sinica 52(4):1093−94

doi: 10.16420/j.issn.0513-353x.2025-0368
[53]

Montesinos JC, Abuzeineh A, Kopf A, Juanes-Garcia A, Ötvös K, et al. 2020. Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. The EMBO Journal 39(17):e104238

doi: 10.15252/embj.2019104238
[54]

Haddon L, Northcote DH. 1976. The influence of gibberellic acid and abscisic acid on cell and tissue differentiation of bean callus. Journal of Cell Science 20(1):47−55

doi: 10.1242/jcs.20.1.47