| [1] |
Barchenger DW, Naresh P, Kumar S. 2019. Genetic resources of Capsicum. In The Capsicum Genome, eds Ramchiary N, Kole C. Cham: Springer. pp 9–23. doi: 10.1007/978-3-319-97217-6_2 |
| [2] |
Pathirana R. 2013. Peppers: vegetable and spice capsicums. 2nd edition, by Paul W. Bosland and Eric J. Votava. |
| [3] |
Duranova H, Valkova V, Gabriny L. 2022. Chili peppers (Capsicum spp.): the spice not only for cuisine purposes: an update on current knowledge. |
| [4] |
Liu Z, Cai S, Zhang S, Xiao Y, Devahastin S, et al. 2023. A systematic review on fermented chili pepper products: Sensorial quality, health benefits, fermentation microbiomes, and metabolic pathways. |
| [5] |
Cirlini M, Luzzini G, Morini E, Folloni S, Ranieri R, et al. 2019. Evaluation of the volatile fraction, pungency and extractable color of different Italian Capsicum annuum cultivars designed for food industry. |
| [6] |
Kumar S, Kumar R, Singh J. 2006. Cayenne/American pepper. In Handbook of Herbs and Spices, ed. Peter KV. UK: Woodhead Publishing. Volume 3. pp. 299−312. doi: 10.1533/9781845691717.3.299 |
| [7] |
Kim MS, Han YJ, Tripathi S, Kwak J, Kwon JK, et al. 2023. Comparison of regeneration conditions in seven pepper (Capsicum annuum L.) varieties. |
| [8] |
Shu H, Zhang Y, He C, Altaf MA, Hao Y, et al. 2022. Establishment of in vitro regeneration system and molecular analysis of early development of somatic callus in Capsicum chinense and Capsicum baccatum. |
| [9] |
Gunay AL, Rao PS. 1978. In vitro plant regeneration from hypocotyl and cotyledon explants of red pepper (Capsicum). |
| [10] |
Ochoa-Alejo N, Ireta-Moreno L. 1990. Cultivar differences in shoot-forming capacity of hypocotyl tissues of chilli pepper (Capsicum annuum L.) cultured in vitro. |
| [11] |
Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N. 2010. Chilli peppers—a review on tissue culture and transgenesis. |
| [12] |
Martínez-López M, García-Pérez A, Gimeno-Páez E, Prohens J, Vilanova S, et al. 2021. Screening of suitable plant regeneration protocols for several Capsicum spp. through direct organogenesis. |
| [13] |
Akther S, Banu TA, Khan S, Akter S, Habib A, et al. 2020. Micropropagation of two varieties of bell pepper (Capsicum annuum L.). |
| [14] |
İzgü T, İlbi H, Mendi YY. 2020. Optimization of plant regeneration in different pepper (Capsicum annuum L.) lines. |
| [15] |
Mandal M. 2022. Effect of plant growth regulators in the propagation of seedling explant Capsicum annuum L. var. annuum. |
| [16] |
Shafiq M, Ashraf T, Mushtaq S, Anjum N, Asim M, et al. 2022. Response of Different (Capsicum annuum L.) genotypes for callus induction, plant regeneration and plant transformation. |
| [17] |
Jha K, Choudhary PK, Agarwal A. 2023. Optimizing androgenic embryo regeneration and chromosome doubling of haploid plants for sweet pepper (Capsicum annuum var. Grossum L.). Journal of Coastal Life Medicine 11(2):1326−34 |
| [18] |
Dabauza M, Peña L. 2001. High efficiency organogenesis in sweet pepper (Capsicum annuum L.) tissues from different seedling explants. |
| [19] |
do Rêgo ER, do Rêgo MM, Finger FL. 2016. Tissue culture of Capsicum spp. In Production and Breeding of Chilli Peppers (Capsicum spp.). Cham: Springer. pp. 97–127. doi: 10.1007/978-3-319-06532-8_6 |
| [20] |
Pijeira-Fernández G, Santana-Buzzy N. 2024. Capsicum recalcitrance: physiological and molecular challenges of pepper tissue culture. |
| [21] |
Orlińska M, Nowaczyk P. 2015. In vitro plant regeneration of 4 Capsicum spp. genotypes using different explant types. |
| [22] |
Gammoudi N, Pedro TS, Ferchichi A, Gisbert C. 2018. Improvement of regeneration in pepper: a recalcitrant species. |
| [23] |
Sanatombi K, Sharma GJ. 2008. In vitro plant regeneration in six cultivars of Capsicum spp. using different explants. |
| [24] |
Heidmann I, de Lange B, Lambalk J, Angenent GC, Boutilier K. 2011. Efficient sweet pepper transformation mediated by the BABY BOOM transcription factor. |
| [25] |
Kumar RV, Sharma VK, Chattopadhyay B, Chakraborty S. 2012. An improved plant regeneration and Agrobacterium - mediated transformation of red pepper (Capsicum annuum L.). |
| [26] |
Li D, Zhao K, Xie B, Zhang B, Luo K. 2003. Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). |
| [27] |
Liu Q, Zhao C, Sun K, Deng Y, Li Z. 2023. Engineered biocontainable RNA virus vectors for non-transgenic genome editing across crop species and genotypes. |
| [28] |
Zhao C, Lou H, Liu Q, Pei S, Liao Q, et al. 2024. Efficient and transformation-free genome editing in pepper enabled by RNA virus-mediated delivery of CRISPR/Cas9. |
| [29] |
Valadez-Bustos MG, Aguado-Santacruz GA, Carrillo-Castañeda G, Aguilar-Rincón VH, Espitia-Rangel E, et al. 2009. In vitro propagation and agronomic performance of regenerated chili pepper (Capsicum spp.) plants from commercially important genotypes. |
| [30] |
Khan M, Buneen U, Sajid SN, Nawaz M, Harron H, et al. 2020. Optimization of regeneration protocols of chilies in local cultivars. |
| [31] |
Ebinuma H, Sugita K, Matsunaga E, Yamakado M. 1997. Selection of marker-free transgenic plants using the isopentenyl transferase gene. |
| [32] |
Lowe K, Wu E, Wang N, Hoerster G, Hastings C, et al. 2016. Morphogenic regulators baby boom and wuschel improve monocot transformation. |
| [33] |
Debernardi JM, Tricoli DM, Ercoli MF, Hayta S, Ronald P, et al. 2020. A GRF–GIF chimeric protein improves the regeneration efficiency of transgenic plants. |
| [34] |
Lian Z, Nguyen CD, Liu L, Wang G, Chen J, et al. 2022. Application of developmental regulators to improve in planta or in vitro transformation in plants. |
| [35] |
Yang W, Zhai H, Wu F, Deng L, Chao Y, et al. 2024. Peptide REF1 is a local wound signal promoting plant regeneration. |
| [36] |
Kumar S, Mehta N, Singh JK, Kumar M, Kumar A. 2017. A protocol for callus induction in chilli genotypes from hypocotyls as explant. |
| [37] |
Ma J, Li Q, Zhang L, Cai S, Liu Y, et al. 2022. High auxin stimulates callus through SDG8-mediated histone H3K36 methylation in Arabidopsis. |
| [38] |
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M. 2007. ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. |
| [39] |
Shams S, Naeem B, Ma L, Li R, Zhang Z, et al. 2024. Developing an optimized protocol for regeneration and transformation in Pepper. |
| [40] |
Iwase A, Harashima H, Ikeuchi M, Rymen B, Ohnuma M, et al. 2017. WIND1 promotes shoot regeneration through transcriptional activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis. |
| [41] |
Hyde CL, Phillips GC. 1996. Silver nitrate promotes shoot development and plant regeneration of Chile pepper (Capsicum annuum L.) via organogenesis. |
| [42] |
Mookkan M, Andy G. 2014. AgNO3 boosted high-frequency shoot regeneration in Vigna mungo (L.) Hepper. |
| [43] |
Prem Kumar G, Sivakumar S, Siva G, Vigneswaran M, Senthil Kumar T, et al. 2016. Silver nitrate promotes high-frequency multiple shoot regeneration in cotton (Gossypium hirsutum L.) by inhibiting ethylene production and phenolic secretion. |
| [44] |
Debnath AJ, Gangopadhyay G, Basu D, Sikdar SR. 2018. An efficient protocol for in vitro direct shoot organogenesis of Sesamum indicum L. using cotyledon as explant. |
| [45] |
Zanewich KP, Rood SB. 2020. Gibberellins and heterosis in crops and trees: an integrative review and preliminary study with Brassica. |
| [46] |
Bello-Bello JJ, Canto-Flick A, Balam-Uc E, Gómez-Uc E, Robert ML, et al. 2010. Improvement of in vitro proliferation and elongation of habanero pepper shoots (Capsicum chinense Jacq.) by temporary immersion. |
| [47] |
Geng F, Moran R, Day M, Halteman W, Zhang D. 2016. Increasing in vitro shoot elongation and proliferation of 'G.30' and 'G.41' apple by chilling explants and plant growth regulators. |
| [48] |
Tariq, Dogra V, Sharma P. 2022. Effect of indole butyric acid (IBA) and honey on root parameters of different sized stem cuttings in bell pepper. Himachal Journal of Agricultural Research 47(2−3):256−59 |
| [49] |
El-Banna MF, Farag NBB, Massoud HY, Kasem MM. 2023. Exogenous IBA stimulated adventitious root formation of Zanthoxylum beecheyanum K. Koch stem cutting: Histo-physiological and phytohormonal investigation. |
| [50] |
Sekhukhune MK, Maila MY. 2024. Exogenous IBA stimulatory effects on root formation of Actinidia deliciosa rootstock and Actinidia arguta male scion stem cuttings. |
| [51] |
Khan MA, Wang Y, Muhammad B, Uddin S, Saeed A, et al. 2024. Morpho-physiological and phytohormonal changes during the induction of adventitious root development stimulated by exogenous IBA application in Magnolia biondii Pamp. |
| [52] |
Wang Z, Liu Y, Hu B, Zhu F, Liu F, et al. 2025. Construction of a high-efficiency genetic transformation system in pepper leveraging RUBY and CaREF1. |
| [53] |
Montesinos JC, Abuzeineh A, Kopf A, Juanes-Garcia A, Ötvös K, et al. 2020. Phytohormone cytokinin guides microtubule dynamics during cell progression from proliferative to differentiated stage. |
| [54] |
Haddon L, Northcote DH. 1976. The influence of gibberellic acid and abscisic acid on cell and tissue differentiation of bean callus. |