[1]

Ando K, Carr KM, Grumet R. 2012. Transcriptome analyses of early cucumber fruit growth identifies distinct gene modules associated with phases of development. BMC Genomics 13(1):518

doi: 10.1186/1471-2164-13-518
[2]

Green BG. 1993. Oral astringency: a tactile component of flavor. Acta Psychologica 84(1):119−25

doi: 10.1016/0001-6918(93)90078-6
[3]

de Freitas V, Mateus N. 2012. Protein/polyphenol interactions: past and present contributions. Mechanisms of astringency perception. Current Organic Chemistry 16(6):724−46

doi: 10.2174/138527212799958002
[4]

Liu J, Xie J, Lin J, Xie X, Fan S, et al. 2023. The material basis of astringency and the deastringent effect of polysaccharides: a review. Food Chemistry 405:134946

doi: 10.1016/j.foodchem.2022.134946
[5]

Lesschaeve I, Noble AC. 2005. Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. The American Journal of Clinical Nutrition 81(1):330S−335S

doi: 10.1093/ajcn/81.1.330S
[6]

Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, et al. 2019. Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. Journal of AOAC International 102(5):1397−400

doi: 10.5740/jaoacint.19-0133
[7]

Li S. 2014. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex. Plant Signaling & Behavior 9(1):e27522

doi: 10.4161/psb.27522
[8]

Vogt T. 2010. Phenylpropanoid biosynthesis. Molecular Plant 3(1):2−20

doi: 10.1093/mp/ssp106
[9]

Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, et al. 2020. Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnology Advances 38:107316

doi: 10.1016/j.biotechadv.2018.11.005
[10]

Winkel-Shirley B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology 126(2):485−93

doi: 10.1104/pp.126.2.485
[11]

Dixon RA, Liu C, Jun JH. 2013. Metabolic engineering of anthocyanins and condensed tannins in plants. Current Opinion in Biotechnology 24(2):329−35

doi: 10.1016/j.copbio.2012.07.004
[12]

Feng H, Li Y, Wang S, Zhang L, Liu Y, et al. 2014. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). Journal of Experimental Botany 65(20):5759−69

doi: 10.1093/jxb/eru286
[13]

Chen W, Xiong Y, Xu L, Zhang Q, Luo Z. 2017. An integrated analysis based on transcriptome and proteome reveals deastringency-related genes in CPCNA persimmon. Scientific Reports 7(1):44671

doi: 10.1038/srep44671
[14]

Mehrtens F, Kranz H, Bednarek P, Weisshaar B. 2005. The Arabidopsis transcription factor MYB12 is a flavonol-specific regulator of phenylpropanoid biosynthesis. Plant Physiology 138(2):1083−96

doi: 10.1104/pp.104.058032
[15]

Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, et al. 2007. Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. The Plant Journal 50(4):660−77

doi: 10.1111/j.1365-313X.2007.03078.x
[16]

Dubos C, Le Gourrierec J, Baudry A, Huep G, Lanet E, et al. 2008. MYBL2 is a new regulator of flavonoid biosynthesis in Arabidopsis thaliana. The Plant Journal 55(6):940−53

doi: 10.1111/j.1365-313X.2008.03564.x
[17]

Matsui K, Umemura Y, Ohme-Takagi M. 2008. AtMYBL2, a protein with a single MYB domain, acts as a negative regulator of anthocyanin biosynthesis in Arabidopsis. The Plant Journal 55(6):954−67

doi: 10.1111/j.1365-313X.2008.03565.x
[18]

Bogs J, Jaffé FW, Takos AM, Walker AR, Robinson SP. 2007. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiology 143(3):1347−61

doi: 10.1104/pp.106.093203
[19]

Nesi N, Debeaujon I, Jond C, Pelletier G, Caboche M, et al. 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. The Plant Cell 12(10):1863−78

doi: 10.1105/tpc.12.10.1863
[20]

Szymanski J, Brotman Y, Willmitzer L, Cuadros-Inostroza Á. 2014. Linking gene expression and membrane lipid composition of Arabidopsis. The Plant Cell 26(3):915−28

doi: 10.1105/tpc.113.118919
[21]

Chen S, Xu J, Liu C, Zhu Y, Nelson DR, et al. 2012. Genome sequence of the model medicinal mushroom Ganoderma lucidum. Nature Communications 3(1):913

doi: 10.1038/ncomms1923
[22]

Ren SL, Zhu XY, Yan LY, Li XL. 2023. Establishment of sensory evaluation method for astringency of cucumber and its application in germplasm evaluation. China Cucurbits and Vegetables 3:36−41

doi: 10.16861/j.cnki.zggc.2023.0043
[23]

Chen S, Zhou Y, Chen Y, Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884−i890

doi: 10.1093/bioinformatics/bty560
[24]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12(4):357−60

doi: 10.1038/nmeth.3317
[25]

Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166−69

doi: 10.1093/bioinformatics/btu638
[26]

Love M, Anders S, Huber W. 2014. Differential analysis of count data – the DESeq2 package. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[27]

Wu Z, Wang Z, Xie Y, Liu G, Shang X, et al. 2023. Transcriptome and metabolome profiling provide insights into flavonoid synthesis in Acanthus ilicifolius Linn. Genes 14(3):752

doi: 10.3390/genes14030752
[28]

Zhang J, Wang X, Dong X, Wang F, Cao L, et al. 2022. Expression analysis and functional characterization of tomato Tubby-like protein family. Plant Science 324:111454

doi: 10.1016/j.plantsci.2022.111454
[29]

Jin H, Cominelli E, Bailey P, Parr A, Mehrtens F, et al. 2000. Transcriptional repression by AtMYB4 controls production of UV-protecting sunscreens in Arabidopsis. The EMBO Journal 19(22):6150−61

doi: 10.1093/emboj/19.22.6150
[30]

Chen W, Zheng Q, Li J, Liu Y, Xu L, et al. 2021. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. The Plant Journal 106(6):1708−27

doi: 10.1111/tpj.15266
[31]

Li P, Fu J, Xu Y, Shen Y, Zhang Y, et al. 2022. CsMYB1 integrates the regulation of trichome development and catechins biosynthesis in tea plant domestication. New Phytologist 234(3):902−17

doi: 10.1111/nph.18026
[32]

Baldi P, Moser M, Brilli M, Vrhovsek U, Pindo M, et al. 2017. Fine-tuning of the flavonoid and monolignol pathways during apple early fruit development. Planta 245(5):1021−35

doi: 10.1007/s00425-017-2660-5
[33]

Scharbert S, Hofmann T. 2005. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. Journal of Agricultural and Food Chemistry 53(13):5377−84

doi: 10.1021/jf050294d
[34]

Singh K, Kumar S, Rani A, Gulati A, Ahuja PS. 2009. Phenylalanine ammonia-lyase (PAL) and cinnamate 4-hydroxylase (C4H) and catechins (flavan-3-ols) accumulation in tea. Functional & Integrative Genomics 9(1):125−34

doi: 10.1007/s10142-008-0092-9
[35]

Xiong L, Li J, Li Y, Yuan L, Liu S, et al. 2013. Dynamic changes in catechin levels and catechin biosynthesis-related gene expression in albino tea plants (Camellia sinensis L.). Plant Physiology and Biochemistry 71:132−43

doi: 10.1016/j.plaphy.2013.06.019
[36]

Huang J, Gu M, Lai Z, Fan B, Shi K, et al. 2010. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiology 153(4):1526−38

doi: 10.1104/pp.110.157370
[37]

Olsen KM, Lea US, Slimestad R, Verheul M, Lillo C. 2008. Differential expression of four Arabidopsis PAL genes; PAL1 and PAL2 have functional specialization in abiotic environmental-triggered flavonoid synthesis. Journal of Plant Physiology 165(14):1491−99

doi: 10.1016/j.jplph.2007.11.005
[38]

Xu X, Tian H, He M, Gebretsadik K, Qi X, et al. 2019. Changes in catechin contents and expression of catechin biosynthesis-associated genes during early cucumber fruit development. Acta Physiologiae Plantarum 41(8):130

doi: 10.1007/s11738-019-2925-7
[39]

Gao S, Yu HN, Xu RX, Cheng AX, Lou HX. 2015. Cloning and functional characterization of a 4-coumarate CoA ligase from liverwort Plagiochasma appendiculatum. Phytochemistry 111:48−58

doi: 10.1016/j.phytochem.2014.12.017
[40]

Gui J, Shen J, Li L. 2011. Functional characterization of evolutionarily divergent 4-coumarate: coenzyme a ligases in rice. Plant Physiology 157(2):574−86

doi: 10.1104/pp.111.178301
[41]

Ehlting J, Büttner D, Wang Q, Douglas CJ, Somssich IE, et al. 1999. Three 4-coumarate: coenzyme A ligases in Arabidopsis thaliana represent two evolutionarily divergent classes in angiosperms. The Plant Journal 19(1):9−20

doi: 10.1046/j.1365-313X.1999.00491.x
[42]

Xu P, Wu L, Cao M, Ma C, Xiao K, et al. 2021. Identification of MBW complex components implicated in the biosynthesis of flavonoids in woodland strawberry. Frontiers in Plant Science 12:774943

doi: 10.3389/fpls.2021.774943
[43]

Liu M, Zhang C, Duan L, Luan Q, Li J, et al. 2019. CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. Journal of Experimental Botany 70(1):69−84

doi: 10.1093/jxb/ery336