[1]

Schaafsma M. 2021. Natural Environment and Human Well-Being. In Encyclopedia of the UN Sustainable Development Goals. Cham: Springer International Publishing. pp 688–99 http://link.springer.com/10.1007/978-3-319-95981-8_104

[2]

Turner MC, Andersen ZJ, Baccarelli A, Diver WR, Gapstur SM, et al. 2020. Outdoor air pollution and cancer: an overview of the current evidence and public health recommendations. CA: A Cancer Journal for Clinicians 70:460−79

doi: 10.3322/caac.21632
[3]

Manisalidis I, Stavropoulou E, Stavropoulos A, Bezirtzoglou E. 2020. Environmental and health impacts of air pollution: a review. Frontiers in Public Health 8:00014

doi: 10.3389/fpubh.2020.00014
[4]

Ofremu GO, Raimi BY, Yusuf SO, Dziwornu BA, Nnabuife SG, et al. 2025. Exploring the relationship between climate change, air pollutants and human health: Impacts, adaptation, and mitigation strategies. Green Energy and Resources 3:100074

doi: 10.1016/j.gerr.2024.100074
[5]

Edo GI, Itoje-akpokiniovo LO, Obasohan P, Ikpekoro VO, Samuel PO, et al. 2024. Impact of environmental pollution from human activities on water, air quality and climate change. Ecological Frontiers 44:874−89

doi: 10.1016/j.ecofro.2024.02.014
[6]

Marais EA, Silvern RF, Vodonos A, Dupin E, Bockarie AS, et al. 2019. Air quality and health impact of future fossil fuel use for electricity generation and transport in Africa. Environmental Science & Technology 53(22):13524−34

doi: 10.1021/acs.est.9b04958
[7]

Okedere OB, Elehinafe FB, Oyelami S, Ayeni AO. 2021. Drivers of anthropogenic air emissions in Nigeria - A review. Heliyon 7:e06398

doi: 10.1016/j.heliyon.2021.e06398
[8]

Heinemann G, Banzer F, Dumitrescu R, Hirschhausen CV, Neuhoff ME, et al. 2022. Transforming electricity access by replacing back-up generators with solar systems: Recent trends and evidence from Nigeria. Renewable and Sustainable Energy Reviews 157:111751

doi: 10.1016/j.rser.2021.111751
[9]

Awofeso N. 2011. Generator diesel exhaust: a major hazard to health and the environment in Nigeria. American Journal of Respiratory and Critical Care Medicine 183:1437

doi: 10.1164/ajrccm.183.10.1437
[10]

Giwa SO, Nwaokocha CN, Adeyemi HO. 2019. Noise and emission characterization of off-grid diesel-powered generators in Nigeria. Management of Environmental Quality 30:783−802

doi: 10.1108/meq-07-2018-0120
[11]

Bankole AO, Ogunkeyede AO, Haruna OM, Agboro H, Ekhorutomwen PA, et al. 2024. Air quality assessment of ubeji community near petroleum-related activities. Open Journal of Air Pollution 13:57−71

doi: 10.4236/ojap.2024.132003
[12]

Farquharson D, Jaramillo P, Samaras C. 2018. Sustainability implications of electricity outages in sub-Saharan Africa. Nature Sustainability 1:589−97

doi: 10.1038/s41893-018-0151-8
[13]

Akintola OO. 2000. Investigation of the safe location for private electric power generators servicing residential buildings in Nigeria. Communication in Physical Sciences 9(4):521−32

[14]

Ogunkeyede AO, Mbaoma CO, Iyogbon AD, Adebayo AA, Isukuru EJ. 2023. Air pollution prediction in warri and its environs using quality parameters. International Journal of Geosciences 14:531−46

doi: 10.4236/ijg.2023.146029
[15]

Lawal OA, Oba MZ, Kabiru L. 2020. Analysis of environmental effects of the major stand-alone power generators used in Nigeria and sub-saharan Africa. ATBU Journal of Environmental Technology 13(2):14−27

[16]

Oguntoke O, Adeyemi A. 2017. Degradation of urban environment and human health by emissions from fossil-fuel combusting electricity generators in Abeokuta metropolis, Nigeria. Indoor and Built Environment 26:538−50

doi: 10.1177/1420326x16629818
[17]

Ohadugha CB, Sanusi YA, Sulyman AO, Santali BNA, Mohammed M, et al. 2021. Households' exposure to indoor air pollution from fossil fuel electric generator use in Minna Nigeria. West Africa Built Environment Research (WABER) Conference WABER 2021 Conference, 9–11 August 2021, Accra, Ghana. Ghana: Accra. pp. 661–70 https://waberconference.com/wp-content/themes/waberconference/assets/images/conference_papers/44.pdf

[18]

Adeniran JA, Yusuf RO, Amole MO, Jimoda LA, Sonibare JA. 2017. Air quality impact of diesel back-up generators (BUGs) in Nigeria's mobile telecommunication base transceiver stations (BTS). Management of Environmental Quality 28:723−44

doi: 10.1108/meq-09-2015-0168
[19]

Vardoulakis S, Giagloglou E, Steinle S, Davis A, Sleeuwenhoek A, et al. 2020. Indoor exposure to selected air pollutants in the home environment: a systematic review. International Journal of Environmental Research and Public Health 17:8972

doi: 10.3390/ijerph17238972
[20]

Komatsu M, Nishina K, Hashimoto S. 2019. Extensive analysis of radiocesium concentrations in wild mushrooms in eastern Japan affected by the Fukushima nuclear accident: use of open accessible monitoring data. Environmental Pollution 255:113236

doi: 10.1016/j.envpol.2019.113236
[21]

Ab Rhaman SMS, Naher L, Siddiquee S. 2022. Mushroom quality related with various substrates' bioaccumulation and translocation of heavy metals. Journal of Fungi 8:42

doi: 10.3390/jof8010042
[22]

Huang WH, Lin CC, Liu YY, Huang CM, Yeh YL, et al. 2022. Activity concentrations and bioconcentration factors (BCFs) of natural radionuclides (40K, 226Ra, and 232Th) from cultivated substrates to mushrooms. Environmental Science and Pollution Research International 29:82512−23

doi: 10.1007/s11356-022-21638-4
[23]

Kim SH, Kim JE, Kim JY. 2018. Analysis of fungal concentration and species present as bio-aerosols in oak mushroom cultivation houses. The Korean Journal of Mycology 46(4):393−403

[24]

Malik MFA, Vajravelu A, Karthik RP. 2022. Monitoring system for mushroom cultivation in indoor farming using ESP32 arduino. Evolution in Electrical and Electronic Engineering 3(1):199−207

[25]

Mleczek M, Siwulski M, Mikołajczak P, Goliński P, Gąsecka M, et al. 2015. Bioaccumulation of elements in three selected mushroom species from southwest Poland. Journal of Environmental Science and Health, Part B 50:207−16

doi: 10.1080/03601234.2015.982427
[26]

Širić I, Humar M, Kasap A, Kos I, Mioč B, et al. 2016. Heavy metal bioaccumulation by wild edible saprophytic and ectomycorrhizal mushrooms. Environmental Science and Pollution Research 23:18239−52

doi: 10.1007/s11356-016-7027-0
[27]

Li X, Xia H, Wang J, Chen Q. 2021. Nutrient uptake and assimilation in fragrant rosewood (Dalbergia odorifera T. C. Chen) seedlings in growing media with un-composted spent mushroom residue. PLoS One 16:e0249534

doi: 10.1371/journal.pone.0249534
[28]

Kulshreshtha S. 2019. Removal of pollutants using spent mushrooms substrates. Environmental Chemistry Letters 17:833−47

doi: 10.1007/s10311-018-00840-2
[29]

Karami H, Shariatifar N, Nazmara S, Moazzen M, Mahmoodi B, et al. 2021. The concentration and probabilistic health risk of potentially toxic elements (PTEs) in edible mushrooms (wild and cultivated) samples collected from different cities of Iran. Biological Trace Element Research 199:389−400

doi: 10.1007/s12011-020-02130-x
[30]

Hnydiuk-Stefan A, Królczyk JB, Matuszek DB, Biłos Ł, Grzywacz Ż, et al. 2024. Impact of bottom ash addition on Pleurotus ostreatus cultivation on coffee ground substrate. Scientific Reports 14:31890

doi: 10.1038/s41598-024-83434-z
[31]

Tsai WT. 2016. Toxic volatile organic compounds (VOCs) in the atmospheric environment: regulatory aspects and monitoring in Japan and Korea. Environments 3:23

doi: 10.3390/environments3030023
[32]

Halios CH, Landeg-Cox C, Lowther SD, Middleton A, Marczylo T, et al. 2022. Chemicals in European residences–Part I: a review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Science of the Total Environment 839:156201

doi: 10.1016/j.scitotenv.2022.156201
[33]

Zhou X, Zhou X, Wang C, Zhou H. 2023. Environmental and human health impacts of volatile organic compounds: a perspective review. Chemosphere 313:137489

doi: 10.1016/j.chemosphere.2022.137489
[34]

Afolabi OO, Wali E, Ihunda EC, Orji MC, Emelu VO, et al. 2022. Potential environmental pollution and human health risk assessment due to leachate contamination of groundwater from anthropogenic impacted site. Environmental Challenges 9:100627

doi: 10.1016/j.envc.2022.100627
[35]

Rather RA. 2021. Demystifying the effects of perceived risk and fear on customer engagement, co-creation and revisit intention during COVID-19: a protection motivation theory approach. Journal of Destination Marketing & Management 20:100564

doi: 10.1016/j.jdmm.2021.100564
[36]

Zeydan Ö, Ülker U. 2024. Assessment of ground-level ozone pollution in Türkiye according to new WHO limits. Environmental Monitoring and Assessment 196(6):549

doi: 10.1007/s10661-024-12718-8
[37]

Umar SA, Tasduq SA. 2022. Ozone layer depletion and emerging public health concerns – an update on epidemiological perspective of the ambivalent effects of ultraviolet radiation exposure. Frontiers in Oncology 12:10

doi: 10.3389/fonc.2022.866733
[38]

Chiu SW, Gao T, Chan CSS, Ho CKM. 2009. Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius. Chemosphere 75:837−42

doi: 10.1016/j.chemosphere.2008.12.044
[39]

Njoku KL, Yussuf A, Akinola MO, Adesuyi AA, Jolaoso AO, et al. 2017. Mycoremediation of petroleum hydrocarbon polluted soil by Pleurotus pulmonarius. Ethiopian Journal of Environmental Studies and Management 9:865

doi: 10.4314/ejesm.v9i1.6s
[40]

Ere W, Ayodeji BT. 2010. Modeling the degradation of total petroleum hydrocarbon in soil using mushroom. International Journal of Engineering Trends and Technology 66(2):81−91

doi: 10.14445/22315381/IJETT-V66P215
[41]

Igbiri S, Udowelle NA, Ekhator OC, Asomugha RN, Igweze ZN, et al. 2017. Polycyclic aromatic hydrocarbons in edible mushrooms from Niger delta, Nigeria: carcinogenic and non-carcinogenic health risk assessment. The Asian Pacific Journal of Cancer Prevention 18:437−47

doi: 10.22034/apjcp.2017.18.2.437
[42]

García-Delgado C, Yunta F, Eymar E. 2015. Bioremediation of multi-polluted soil by spent mushroom (Agaricus bisporus) substrate: Polycyclic aromatic hydrocarbons degradation and Pb availability. Journal of Hazardous Materials 300:281−88

doi: 10.1016/j.jhazmat.2015.07.008
[43]

García-Delgado C, D'Annibale A, Pesciaroli L, Yunta F, Crognale S, et al. 2015. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation. Science of the Total Environment 508:20−28

doi: 10.1016/j.scitotenv.2014.11.046
[44]

Pozdnyakova N, Dubrovskaya E, Chernyshova M, Makarov O, Golubev S, et al. 2018. The degradation of three-ringed polycyclic aromatic hydrocarbons by wood-inhabiting fungus Pleurotus ostreatus and soil-inhabiting fungus Agaricus bisporus. Fungal Biology 122:363−72

doi: 10.1016/j.funbio.2018.02.007
[45]

Zhou J, Ge W, Zhang X, Wu J, Chen Q, et al. 2020. Effects of spent mushroom substrate on the dissipation of polycyclic aromatic hydrocarbons in agricultural soil. Chemosphere 259:127462

doi: 10.1016/j.chemosphere.2020.127462
[46]

El Enshasy H, Agouillal F, Mat Z, Abd Malek R, Hanapi SZ, et al. 2019. Pleurotus ostreatus: a biofactory for lignin-degrading enzymes of diverse industrial applications. In Recent Advancement in White Biotechnology Through Fungi. Fungal Biology, eds. Yadav A, Singh S, Mishra S, Gupta A. Cham: Springer. pp. 101–52 doi: 10.1007/978-3-030-25506-0_5

[47]

Daccò C, Girometta C, Asemoloye MD, Carpani G, Picco AM, et al. 2020. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: a review. International Biodeterioration & Biodegradation 147:104866

doi: 10.1016/j.ibiod.2019.104866
[48]

Dinakarkumar Y, Ramakrishnan G, Gujjula KR, Vasu V, Balamurugan P, et al. 2024. Fungal bioremediation: an overview of the mechanisms, applications and future perspectives. Environmental Chemistry and Ecotoxicology 6:293−302

doi: 10.1016/j.enceco.2024.07.002