[1]

Haider S, Bibi K, Munyaneza V, Zhang H, Zhang W, et al. 2024. Drought-induced adaptive and ameliorative strategies in plants. Chemosphere 364:143134

doi: 10.1016/j.chemosphere.2024.143134
[2]

Majidian P, Ghorbani H. 2024. Salinity stress in plants: challenges in view of physiological aspects. In Abiotic Stress in Crop Plants - Ecophysiological Responses and Molecular Approaches, eds Hasanuzzaman M, Nahar K. London: IntechOpen. doi: 10.5772/intechopen.114576

[3]

Li Z, Guan L, Zhang C, Zhang S, Liu Y, et al. 2024. Nitrogen assimilation genes in poplar: potential targets for improving tree nitrogen use efficiency. Industrial Crops and Products 216:118705

doi: 10.1016/j.indcrop.2024.118705
[4]

Li T, Chen X, Lin S. 2021. Physiological and transcriptomic responses to N-deficiency and ammonium: nitrate shift in Fugacium kawagutii (Symbiodiniaceae). Science of The Total Environment 753:141906

doi: 10.1016/j.scitotenv.2020.141906
[5]

Kang J, Chu Y, Ma G, Zhang Y, Zhang X, et al. 2023. Physiological mechanisms underlying reduced photosynthesis in wheat leaves grown in the field under conditions of nitrogen and water deficiency. The Crop Journal 11:638−50

doi: 10.1016/j.cj.2022.06.010
[6]

Ye JY, Tian WH, Jin CW. 2022. Nitrogen in plants: from nutrition to the modulation of abiotic stress adaptation. Stress Biology 2:4

doi: 10.1007/s44154-021-00030-1
[7]

Ullah A, Tariq A, Sardans J, Peñuelas J, Zeng F, et al. 2022. Alhagi sparsifolia acclimatizes to saline stress by regulating its osmotic, antioxidant, and nitrogen assimilation potential. BMC Plant Biology 22:453

doi: 10.1186/s12870-022-03832-1
[8]

Liu X, Hu B, Chu C. 2022. Nitrogen assimilation in plants: current status and future prospects. Journal of Genetics and Genomics 49:394−404

doi: 10.1016/j.jgg.2021.12.006
[9]

Huertas R, Ding N, Scheible W, Udvardi M. 2024. Transcriptional, metabolic, physiological and developmental responses to nitrogen limitation in switchgrass (Panicum virgatum). Environmental and Experimental Botany 222:105770

doi: 10.1016/j.envexpbot.2024.105770
[10]

Zhang X, He P, Guo R, Huang K, Huang X. 2023. Effects of salt stress on root morphology, carbon and nitrogen metabolism, and yield of Tartary buckwheat. Scientific Reports 13:12483

doi: 10.1038/s41598-023-39634-0
[11]

Tian J, Pang Y, Yuan W, Peng J, Zhao Z. 2022. Growth and nitrogen metabolism in Sophora Japonica (L.) as affected by salinity under different nitrogen forms. Plant Science 322:111347

doi: 10.1016/j.plantsci.2022.111347
[12]

Huang J, Zhu C, Hussain S, Huang J, Liang Q, et al. 2020. Effects of nitric oxide on nitrogen metabolism and the salt resistance of rice (Oryza Sativa L.) seedlings with different salt tolerances. Plant Physiology and Biochemistry 155:374−83

doi: 10.1016/j.plaphy.2020.06.013
[13]

Zhang Y, Zhang L, Hu XH. 2014. Exogenous spermidine-induced changes at physiological and biochemical parameters levels in tomato seedling grown in saline-alkaline condition. Botanical Studies 55:58

doi: 10.1186/s40529-014-0058-2
[14]

Krapp A. 2015. Plant nitrogen assimilation and its regulation: a complex puzzle with missing pieces. Current Opinion in Plant Biology 25:115−22

doi: 10.1016/j.pbi.2015.05.010
[15]

Shao QS, Shu S, Du J, Xing WW, Guo SR, et al. 2015. Effects of NaCl stress on nitrogen metabolism of cucumber seedlings. Russian Journal of Plant Physiology 62:595−603

doi: 10.1134/S1021443715050155
[16]

Meng S, Su L, Li Y, Wang Y, Zhang C, et al. 2016. Nitrate and ammonium contribute to the distinct nitrogen metabolism of Populus simonii during moderate salt stress. PLoS One 11:e0150354

doi: 10.1371/journal.pone.0150354
[17]

Ullah A, Li M, Noor J, Tariq A, Liu Y, et al. 2019. Effects of salinity on photosynthetic traits, ion homeostasis and nitrogen metabolism in wild and cultivated soybean. PeerJ 7:e8191

doi: 10.7717/peerj.8191
[18]

Ben Azaiez FE, Ayadi S, Capasso G, Landi S, Paradisone V, et al. 2020. Salt stress induces differentiated nitrogen uptake and antioxidant responses in two contrasting barley landraces from MENA region. Agronomy 10:1426

doi: 10.3390/agronomy10091426
[19]

Wang M, Gong S, Fu L, Hu G, Li G, et al. 2022. The involvement of antioxidant enzyme system, nitrogen metabolism and osmoregulatory substances in alleviating salt stress in inbred maize lines and hormone regulation mechanisms. Plants 11:1547

doi: 10.3390/plants11121547
[20]

Mondal R, Kumar A, Chattopadhyay SK. 2021. Structural property, molecular regulation, and functional diversity of glutamine synthetase in higher plants: a data-mining bioinformatics approach. The Plant Journal 108:1565−84

doi: 10.1111/tpj.15536
[21]

Fernandes I, Paulo OS, Marques I, Sarjkar I, Sen A, et al. 2022. Salt stress tolerance in Casuarina Glauca: insights from the branchlets transcriptome. Plants 11:2942

doi: 10.3390/plants11212942
[22]

López-Arredondo DL, Leyva-González MA, Alatorre-Cobos F, Herrera-Estrella L. 2013. Biotechnology of nutrient uptake and assimilation in plants. The International Journal Of Developmental Biology 57:595−610

doi: 10.1387/ijdb.130268lh
[23]

Li F, Li H, Li S, He Z. 2024. A review of Lycium ruthenicum Murray: geographic distribution tracing, bioactive components, and functional properties. Heliyon 10:e39566

doi: 10.1016/j.heliyon.2024.e39566
[24]

Qin X, Yin Y, Zhao J, An W, Fan Y, et al. 2022. Metabolomic and transcriptomic analysis of Lycium Chinese and L. ruthenicum under salinity stress. BMC Plant Biology 22:8

doi: 10.1186/s12870-021-03375-x
[25]

Li W, Rao S, Du C, Liu L, Dai G, et al. 2022. Strategies used by two goji species, Lycium ruthenicum and Lycium barbarum, to defend against salt stress. Scientia Horticulturae 306:111430

doi: 10.1016/j.scienta.2022.111430
[26]

Chen Y, Huang W, Zhang F, Luo X, Hu B, et al. 2021. Metabolomic profiling of Dongxiang wild rice under salinity demonstrates the significant role of amino acids in rice salt stress. Frontiers in Plant Science 12:729004

doi: 10.3389/fpls.2021.729004
[27]

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. 2011. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nature Biotechnology 29:644−52

doi: 10.1038/nbt.1883
[28]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37:1530−34

doi: 10.1093/molbev/msaa015
[29]

Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−97

doi: 10.1093/bioinformatics/btu817
[30]

Jin J, Tian F, Yang DC, Meng YQ, Kong L, et al. 2017. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Research 45:D1040−D1045

doi: 10.1093/nar/gkw982
[31]

Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, et al. 2007. Integration of biological networks and gene expression data using Cytoscape. Nature Protocols 2:2366−82

doi: 10.1038/nprot.2007.324
[32]

Abramson J, Adler J, Dunger J, Evans R, Green T, et al. 2024. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630:493−500

doi: 10.1038/s41586-024-07487-w
[33]

PyMOL. The PyMOL Molecular Graphics System, Version 3.0. Schrödinger, LLC

[34]

Wei J, Tiika RJ, Ma Y, Yang H, Cui G, et al. 2022. Transcriptome-wide identification and analysis of the KT/HAK/KUP family in black goji under NaCl stress. Agronomy Journal 114:2069−80

doi: 10.1002/agj2.21015
[35]

Kim D, Paggi JM, Park C, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[36]

Liao Y, Smyth GK, Shi W. 2014. FeatureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[37]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[38]

Yang C, Shen S, Zhou S, Li Y, Mao Y, et al. 2022. Rice metabolic regulatory network spanning the entire life cycle. Molecular Plant 15:258−75

doi: 10.1016/j.molp.2021.10.005
[39]

Qi J, Luo Y, Huang H, Lu S, Zhao F, et al. 2023. Molecular mechanism of response and adaptation of antioxidant enzyme system to salt stress in leaves of Gymnocarpos przewalskii. Plants 12:3370

doi: 10.3390/plants12193370
[40]

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24:1586−91

doi: 10.1093/molbev/msm088
[41]

Webb B, Sali A. 2016. Comparative protein structure modeling using MODELLER. Current Protocols in Bioinformatics 54:5.6.1−5.6.37

doi: 10.1002/cpbi.3
[42]

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, et al. 2004. UCSF Chimera - a visualization system for exploratory research and analysis. Journal of Computational Chemistry 25:1605−12

doi: 10.1002/jcc.20084
[43]

Ittisoponpisan S, Islam SA, Khanna T, Alhuzimi E, David A, et al. 2019. Can predicted protein 3D structures provide reliable insights into whether missense variants are disease associated? Journal of Molecular Biology 431:2197−212

doi: 10.1016/j.jmb.2019.04.009
[44]

Forli S, Huey R, Pique ME, Sanner MF, Goodsell DS, et al. 2016. Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols 11:905−19

doi: 10.1038/nprot.2016.051
[45]

Zhang W, Yuan S, Liu N, Zhang H, Zhang Y. 2024. Glutamine synthetase and glutamate synthase family perform diverse physiological functions in exogenous hormones and abiotic stress responses in Pyrus betulifolia Bunge (P.be). Plants 13:2759

doi: 10.3390/plants13192759
[46]

Zeng DD, Qin R, Li M, Alamin M, Jin XL, et al. 2017. The ferredoxin-dependent glutamate synthase (OsFd-GOGAT) participates in leaf senescence and the nitrogen remobilization in rice. Molecular Genetics And Genomics 292:385−95

doi: 10.1007/s00438-016-1275-z
[47]

Gonnet S, Díaz P. 2000. Glutamine synthetase and glutamate synthase activities in relation to nitrogen fixation in Lotus spp. Revista Brasileira de Fisiologia Vegetal 12:195−202

doi: 10.1590/S0103-31312000000300003
[48]

Liu Z, Zhu YA, Dong Y, Tang L, Zheng Y, et al. 2021. Interspecies interaction for nitrogen use efficiency via up-regulated glutamine and glutamate synthase under wheat-faba bean intercropping. Field Crops Research 274:108324

doi: 10.1016/j.fcr.2021.108324
[49]

Liu L, Wang J, Han Z, Sun X, Li H, et al. 2016. Molecular analyses of tomato GS, GOGAT and GDH gene families and their response to abiotic stresses. Acta Physiologiae Plantarum 38:229

doi: 10.1007/s11738-016-2251-2
[50]

García-Gutiérrez Á, Cánovas FM, Ávila C. 2018. Glutamate synthases from conifers: gene structure and phylogenetic studies. BMC Genomics 19:65

doi: 10.1186/s12864-018-4454-y
[51]

Tabuchi M, Abiko T, Yamaya T. 2007. Assimilation of ammonium ions and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental Botany 58:2319−27

doi: 10.1093/jxb/erm016
[52]

Cao L, Xu C, Sun Y, Niu C, Leng X, et al. 2023. Genome-wide identification of glutamate synthase gene family and expression patterns analysis in response to carbon and nitrogen treatment in Populus. Gene 851:146996

doi: 10.1016/j.gene.2022.146996
[53]

Qiao Z, Chen M, Ma W, Zhao J, Zhu J, et al. 2024. Genome-wide identification and expression analysis of GS and GOGAT gene family in Pecan (Carya illinoinensis) under different nitrogen forms. Phyton 93:2349−65

doi: 10.32604/phyton.2024.056655
[54]

Li S, Jiao B, Wang J, Zhao P, Dong F, et al. 2024. Identification of wheat glutamate synthetase gene family and expression analysis under nitrogen stress. Genes 15:827

doi: 10.3390/genes15070827
[55]

Swarbreck SM, Defoin-Platel M, Hindle M, Saqi M, Habash DZ. 2011. New perspectives on glutamine synthetase in grasses. Journal of Experimental Botany 62:1511−22

doi: 10.1093/jxb/erq356
[56]

Ding S, Lv J, Hu Z, Wang J, Wang P, et al. 2023. Phytosulfokine peptide optimizes plant growth and defense via glutamine synthetase GS2 phosphorylation in tomato. The EMBO Journal 42:e111858

doi: 10.15252/embj.2022111858
[57]

Yu Y, Kou X, Gao R, Chen X, Zhao Z, et al. 2021. Glutamine Synthetases Play a Vital Role in High Accumulation of Theanine in Tender Shoots of Albino Tea Germplasm "Huabai 1". Journal of Agricultural and Food Chemistry 69:13904−13915

doi: 10.1021/acs.jafc.1c04567
[58]

Freedman AH, Clamp M, Sackton TB. 2021. Error, noise and bias in de novo transcriptome assemblies. Molecular Ecology Resources 21:18−29

doi: 10.1111/1755-0998.13156
[59]

Tang D, Jiao Z, Zhang Q, Liu MY, Ruan J. 2021. Glutamate dehydrogenase isogenes CsGDHs cooperate with glutamine synthetase isogenes CsGSs to assimilate ammonium in tea plant (Camellia sinensis L.). Plant Science 312:111031

doi: 10.1016/j.plantsci.2021.111031
[60]

Grzechowiak M, Sliwiak J, Link A, Ruszkowski M. 2024. Legume-type glutamate dehydrogenase: structure, activity, and inhibition studies. International Journal of Biological Macromolecules 278:134648

doi: 10.1016/j.ijbiomac.2024.134648
[61]

Tercé-Laforgue T, Clément G, Marchi L, Restivo FM, Lea PJ, et al. 2015. Resolving the role of plant NAD-glutamate dehydrogenase: III. Overexpressing individually or simultaneously the two enzyme subunits under salt stress induces changes in the leaf metabolic profile and increases plant biomass production. Plant and Cell Physiology 56:1918−29

doi: 10.1093/pcp/pcv114
[62]

Fontaine JX, Tercé-Laforgue T, Armengaud P, Clément G, Renou JP, et al. 2012. Characterization of a NADH-Dependent Glutamate Dehydrogenase Mutant of Arabidopsis demonstrates the key role of this enzyme in root carbon and nitrogen metabolism. The Plant Cell 24:4044−65

doi: 10.1105/tpc.112.103689
[63]

Inokuchi R, Kuma KI, Miyata T, Okada M. 2002. Nitrogen-assimilating enzymes in land plants and algae: phylogenic and physiological perspectives. Physiologia Plantarum 116:1−11

doi: 10.1034/j.1399-3054.2002.1160101.x
[64]

Xu Y, Zhang K, Li S, Zhou Y, Ran S, et al. 2023. Carbon and nitrogen metabolism in tomato (Solanum lycopersicum L.) leaves response to nitrogen treatment. Plant Growth Regulation 100:747−56

doi: 10.1007/s10725-023-00969-3
[65]

Rana V, Ram S, Nehra K, Sharma I. 2016. Expression of genes related to Na+ exclusion and proline accumulation in tolerant and susceptible wheat genotypes under salt stress. Cereal Research Communications 44:404−13

doi: 10.1556/0806.44.2016.009
[66]

Xu G, Fan X, Miller AJ. 2012. Plant nitrogen assimilation and use efficiency. Annual Review of Plant Biology 63:153−82

doi: 10.1146/annurev-arplant-042811-105532
[67]

Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, et al. 2023. The role of glutamine synthetase (GS) and glutamate synthase (GOGAT) in the improvement of nitrogen use efficiency in cereals. Biomolecules 13:1771

doi: 10.3390/biom13121771
[68]

Kiba T, Krapp A. 2016. Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant and Cell Physiology 57:707−14

doi: 10.1093/pcp/pcw052
[69]

Ma J, Cirillo V, Zhang D, Maggio A, Wang L, et al. 2020. Regulation of ammonium cellular levels is an important adaptive trait for the euhalophytic behavior of Salicornia europaea. Plants 9:257

doi: 10.3390/plants9020257
[70]

Dubey RS, Srivastava RK, Pessarakli M. 2021. Physiological mechanisms of nitrogen absorption and assimilation in plants under stressful conditions. In Handbook of Plant and Crop Physiology, 4th edition. Boca Raton, FL: CRC Press. pp. 579−616 doi: 10.1201/9781003093640-36

[71]

Hoshida H, Tanaka Y, Hibino T, Hayashi Y, Tanaka A, et al. 2000. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology 43:103−11

doi: 10.1023/A:1006408712416
[72]

Hao R, Gao Z, Zhang X, Wang X, Ye W, et al. 2025. A large-scale gene co-expression network analysis reveals Glutamate Dehydrogenase 2 (GhGDH2_D03) as a hub regulator of salt and salt-alkali tolerance in cotton. Plant Molecular Biology 115:54

doi: 10.1007/s11103-025-01586-6
[73]

Wang Y, Li E, Yu N, Wang X, Cai C, et al. 2012. Characterization and expression of glutamate dehydrogenase in response to acute salinity stress in the Chinese mitten crab, Eriocheir sinensis. PLoS One 7:e37316

doi: 10.1371/journal.pone.0037316
[74]

Ochieng WA, Muthui SW, Xian L, Linda EL, Kombe CA, et al. 2024. Mechanisms of ammonium detoxification in submerged macrophytes under shade conditions. Science of The Total Environment 951:175795

doi: 10.1016/j.scitotenv.2024.175795
[75]

Huang Z, Zhao L, Chen D, Liang M, Liu Z, et al. 2013. Salt stress encourages proline accumulation by regulating proline biosynthesis and degradation in Jerusalem artichoke plantlets. PLoS One 8:e62085

doi: 10.1371/journal.pone.0062085
[76]

Gaudinier A, Rodriguez-Medina J, Zhang L, Olson A, Liseron-Monfils C, et al. 2018. Transcriptional regulation of nitrogen-associated metabolism and growth. Nature 563:259−64

doi: 10.1038/s41586-018-0656-3
[77]

Chen Y, Yang M, Ding W, Zhao Y, Li X, et al. 2017. Wheat ZFP gene TaZFP593;l mediates the N-starvation adaptation of plants through regulating N acquisition and the ROS metabolism. Plant Cell, Tissue and Organ Culture 129:271−88

doi: 10.1007/s11240-017-1176-9
[78]

Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T. 2004. Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proceedings of the National Academy of Sciences of the United States of America 101:7833−38

doi: 10.1073/pnas.0402267101
[79]

Kurai T, Wakayama M, Abiko T, Yanagisawa S, Aoki N, et al. 2011. Introduction of the ZmDof1 gene into rice enhances carbon and nitrogen assimilation under low‐nitrogen conditions. Plant Biotechnology Journal 9:826−37

doi: 10.1111/j.1467-7652.2011.00592.x
[80]

Zhang Y, Pribil M, Palmgren M, Gao C. 2020. A CRISPR way for accelerating improvement of food crops. Nature Food 1:200−205

doi: 10.1038/s43016-020-0051-8
[81]

Yisilam G, Wang CX, Xia MQ, Comes HP, Li P, et al. 2022. Phylogeography and population genetics analyses reveal evolutionary history of the desert resource plant Lycium ruthenicum (Solanaceae). Frontiers in Plant Science 13:915526

doi: 10.3389/fpls.2022.915526
[82]

van den Heuvel RHH, Svergun DI, Petoukhov MV, Coda A, Curti B, et al. 2003. The active conformation of glutamate synthase and its binding to ferredoxin. Journal of Molecular Biology 330:113−28

doi: 10.1016/S0022-2836(03)00522-9
[83]

Foyer CH, Shigeoka S. 2011. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiology 155:93−100

doi: 10.1104/pp.110.166181
[84]

Garcia-Viloca M, Gao J, Karplus M, Truhlar DG. 2004. How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186−95

doi: 10.1126/science.1088172
[85]

Gao K, Rao J, Chen B. 2024. Plant protein solubility: a challenge or insurmountable obstacle. Advances in Colloid and Interface Science 324:103074

doi: 10.1016/j.cis.2023.103074
[86]

Yang Y, Zhao Y, Xu M, Yao Y, Wu N, et al. 2020. Effects of strong alkali treatment on the physicochemical properties, microstructure, protein structures, and intermolecular forces in egg yolks, plasma, and granules. Food Chemistry 311:125998

doi: 10.1016/j.foodchem.2019.125998
[87]

Pace CN, Treviño S, Prabhakaran E, Scholtz JM. 2004. Protein structure, stability and solubility in water and other solvents. Philosophical Transactions of the Royal Society B 359:1225−35

doi: 10.1098/rstb.2004.1500