[1]

Narender SA, Mridu. 2021. Progress of Mushroom Research in India. In Progress in Mycology, eds. Satyanarayana T, Deshmukh SK, Deshpande MV. Singapore: Springer. pp. 531–59 doi: 10.1007/978-981-16-2350-9_18

[2]

Elisashvili, V. 2012. Submerged cultivation of medicinal mushrooms: bioprocesses and products (review). International Journal of Medicinal Mushrooms 14(3):211−39

doi: 10.1615/intjmedmushr.v14.i3.10
[3]

Chang S, Miles PG. 1989. Edible Mushrooms and their Cultivation. Vol. 1. India: CRC Press. pp. 345

[4]

Royse DJ, Schisler LC, Diehle DA. 1985. Shiitake mushrooms consumption, production and cultivation. Interdisciplinary Science Reviews 10:329−35

doi: 10.1179/isr.1985.10.4.329
[5]

Van Griensven LJLD. 1987. The cultivation of mushrooms: its present status and future developments. Outlook on Agriculture 16:131−35

doi: 10.1177/003072708701600306
[6]

Barh A, Sharma VP, Annepu SK, Kamal S, Sharma S, et al. 2019. Genetic improvement in Pleurotus (oyster mushroom): a review. 3 Biotech 9:322

doi: 10.1007/s13205-019-1854-x
[7]

Borah TR, Singh AR, Paul P, Talang H, Kumar B, et al. 2020. Spawn Production and Mushroom Cutlivation Technology. ICAR Research Complex for NEH Region. 46

[8]

Sharma VP, Sudheer K, Gautam MS, Kamal S. 2017. Status of Mushroom Production in India. Mushroom Research 26(2):111−20

[9]

Kitano H. 2002. Systems biology: a brief overview. Science 295:1662−64

doi: 10.1126/science.1069492
[10]

Khatua S, Paul S, Acharya K. 2013. Mushroom as the Potential Source of New Generation of Antioxidant: A Review. Research Journal of Pharmacy and Technology 6(5):496−505

[11]

Kozarski M, Klaus A, Jakovljevic D, Todorovic N, Vunduk J, et al. 2015. Antioxidants of edible mushrooms. Molecules 20:19489−525

doi: 10.3390/molecules201019489
[12]

Rahmann G, Azim K, Brányiková I, Chander M, David W, et al. 2021. Innovative, sustainable, and circular agricultural systems for the future. Organic Agriculture 11:179−85

doi: 10.1007/s13165-021-00356-0
[13]

Jeong SH, Lee HJ, Lee SJ. 2023. Recent advances in CRISPR-cas technologies for synthetic biology. Journal of Microbiology 61:13−36

doi: 10.1007/s12275-022-00005-5
[14]

Zou G, Nielsen JB, Wei Y. 2023. Harnessing synthetic biology for mushroom farming. Trends in Biotechnology 41:480−83

doi: 10.1016/j.tibtech.2022.10.001
[15]

Valverde ME, Hernández-Pérez T, Paredes-López O. 2015. Edible mushrooms: improving human health and promoting quality life. International Journal of Microbiology 2015:376387

doi: 10.1155/2015/376387
[16]

Ahenkan A, Boon E. 2011. Improving nutrition and health through non-timber forest products in Ghana. Journal of Health, Population, and Nutrition 29:141−48

doi: 10.3329/jhpn.v29i2.7856
[17]

Wang XM, Zhang J, Wu LH, Zhao YL, Li T, et al. 2014. A mini-review of chemical composition and nutritional value of edible wild-grown mushroom from China. Food Chemistry 151:279−85

doi: 10.1016/j.foodchem.2013.11.062
[18]

Mattila P, Könkö K, Eurola M, Pihlava JM, Astola J, et al. 2001. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. Journal of Agricultural and Food Chemistry 49(5):2343−48

doi: 10.1021/jf001525d
[19]

Sides R, Griess-Fishheimer S, Zaretsky J, Shitrit A, Kalev-Altman R, et al. 2021. The Use of Mushrooms and Spirulina Algae as Supplements to Prevent Growth Inhibition in a Pre-Clinical Model for an Unbalanced Diet. Nutrients 13(12):4316

doi: 10.3390/nu13124316
[20]

Asad F, Anwar H, Yassine HM, Ullah MI, Rahman A, et al. 2020. White button mushroom, Agaricus bisporus (Agaricomycetes), and a probiotics mixture supplementation correct dyslipidemia without influencing the colon microbiome profile in hypercholesterolemic rats. International Journal of Medicinal Mushrooms 22:235−44

doi: 10.1615/IntJMedMushrooms.2020033807
[21]

Singh M, Kamal S, Sharma VP. 2021. Status and trends in world mushroom production-III-World Production of Different Mushroom Species in 21st Century. Mushroom Research 29:75

doi: 10.36036/mr.29.2.2020.113703
[22]

Phan CW, Sabaratnam V. 2012. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Applied Microbiology and Biotechnology 96:863−73

doi: 10.1007/s00253-012-4446-9
[23]

Stoknes K, Beyer DM, Norgaard E. 2013. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity. Journal of the Science of Food and Agriculture 93:2188−200

doi: 10.1002/jsfa.6026
[24]

Zhang Y, Chen S, Yang L, Zhang Q. 2023. Application progress of CRISPR/Cas9 genome-editing technology in edible fungi. Frontiers in Microbiology 14:1169884

doi: 10.3389/fmicb.2023.1169884
[25]

Martín C, Zervakis GI, Xiong S, Koutrotsios G, Strætkvern KO. 2023. Spent substrate from mushroom cultivation: exploitation potential toward various applications and value-added products. Bioengineered 14:2252138

doi: 10.1080/21655979.2023.2252138
[26]

Leong YK, Ma TW, Chang JS, Yang FC. 2022. Recent advances and future directions on the valorization of spent mushroom substrate (SMS): a review. Bioresource Technology 344:126157

doi: 10.1016/j.biortech.2021.126157
[27]

Gao Y, Wu Z, Li W, Sun H, Chai Y, et al. 2023. Expanding the valorization of waste mushroom substrates in agricultural production: progress and challenges. Environmental Science and Pollution Research 30:2355−73

doi: 10.1007/s11356-022-24125-y
[28]

Rajavat AS, Rai S, Pandiyan K, Kushwaha P, Choudhary P, et al. 2020. Sustainable use of the spent mushroom substrate of Pleurotus florida for production of lignocellulolytic enzymes. Journal of Basic Microbiology 60:173−84

doi: 10.1002/jobm.201900382
[29]

Iglesias H, Ortiz AP, Soriano Disla JM, Lara-Guillén AJ. 2025. Environmental and economic life cycle impacts of using spent mushroom substrate as a soil improver. Environments 12:31

doi: 10.3390/environments12010031
[30]

Ashrafi R, Rahman MM, Jahiruddin M, Mian MH. 2015. Quality assessment of compost prepared from spent mushroom substrate. Progressive Agriculture 25:1−8

doi: 10.3329/pa.v25i0.24063
[31]

Toptas A, Demierege S, Mavioglu Ayan E, Yanik J. 2014. Spent mushroom compost as biosorbent for dye biosorption. CLEAN – Soil, Air, Water 42:1721−28

doi: 10.1002/clen.201300657
[32]

Chen GQ, Zeng GM, Tu X, Huang GH, Chen YN. 2005. A novel biosorbent: characterization of the spent mushroom compost and its application for removal of heavy metals. Journal of Environmental Sciences 17:756−60

[33]

Lin NX, He RZ, Xu Y, Yu XW. 2021. Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris. Biotechnology for Biofuels 14:160

doi: 10.1186/s13068-021-02013-w
[34]

Chung JD. 2000. Design of metabolic feed controllers: Application to high-density fermentations of Pichia pastoris. Biotechnology and Bioengineering 68:298−307

doi: 10.1002/(SICI)1097-0290(20000505)68:3<298::AID-BIT8>3.0.CO;2-K
[35]

Sharma E, Bairwa R, Lal P, Pattanayak S, Chakrapani K, et al. 2024. Edible mushrooms trending in food: Nutrigenomics, bibliometric, from bench to valuable applications. Heliyon 10:e36963

doi: 10.1016/j.heliyon.2024.e36963
[36]

Yadav D, Negi PS. 2021. Bioactive components of mushrooms: Processing effects and health benefits. Food Research International 148:110599

doi: 10.1016/j.foodres.2021.110599
[37]

Li YR, Liu QH, Wang HX, Ng TB. 2008. A novel lectin with potent antitumor, mitogenic and HIV-1 reverse transcriptase inhibitory activities from the edible mushroom Pleurotus citrinopileatus. Biochimica et Biophysica Acta (BBA) - General Subjects 1780:51−57

doi: 10.1016/j.bbagen.2007.09.004
[38]

Ngai PHK, Ng TB. 2004. A ribonuclease with antimicrobial, antimitogenic and antiproliferative activities from the edible mushroom Pleurotus sajor -caju. Peptides-caju. Peptides 25:11−17

doi: 10.1016/j.peptides.2003.11.012
[39]

Han C, Gui C, Su B, Liu N, Yan H, et al. 2025. DR5 is a restriction factor for human herpesviruses. Proceedings of the National Academy of Sciences of the United States of America 122:e2417372122

doi: 10.1073/pnas.2417372122
[40]

Chamoli V, Singh K, Parashar GK, Pant A. 2023. The usage of spent mushroom substrate. International Journal of Plant Pathology and Microbiology 3(2):48−50

doi: 10.22271/27893065
[41]

Tang C, Hoo PC, Tan LT, Pusparajah P, Khan TM, et al. 2016. Golden needle mushroom: a culinary medicine with evidenced-based biological activities and health promoting properties. Frontiers in Pharmacology 7:474

doi: 10.3389/fphar.2016.00474
[42]

Kumla J, Suwannarach N, Sujarit K, Penkhrue W, Kakumyan P, et al. 2020. Cultivation of mushrooms and their lignocellulolytic enzyme production through the utilization of agro-industrial waste. Molecules 25:2811

doi: 10.3390/molecules25122811
[43]

Balan V, da Costa Sousa L, Chundawat SPS, Vismeh R, Jones AD, et al. 2008. Mushroom spent straw: a potential substrate for an ethanol-based biorefinery. Journal of Industrial Microbiology & Biotechnology 35:293−301

doi: 10.1007/s10295-007-0294-5
[44]

Isikhuemhen OS, Mikiashvili NA, Kelkar V. 2009. Application of solid waste from anaerobic digestion of poultry litter in Agrocybe aegerita cultivation: mushroom production, lignocellulolytic enzymes activity and substrate utilization. Biodegradation 20:351−61

doi: 10.1007/s10532-008-9226-y
[45]

Cesur A, Yamamoto R, Asada Y, Watanabe A. 2022. Relationship between fruiting body development and extracellular laccase production in the edible mushroom Flammulina velutipes. Biochemistry and Biophysics Reports 29:101204

doi: 10.1016/j.bbrep.2022.101204
[46]

Jin W, Li J, Feng H, You S, Zhang L, et al. 2018. Importance of a laccase gene (Lcc1) in the development of Ganoderma tsugae. International Journal of Molecular Sciences 19:471

doi: 10.3390/ijms19020471
[47]

Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, et al. 2024. Plant-derived terpenoids: a plethora of bioactive compounds with several health functions and industrial applications—a comprehensive overview. Molecules 29:3861

doi: 10.3390/molecules29163861
[48]

Zhao YY, Chao X, Zhang Y, Lin RC, Sun WJ. 2010. Cytotoxic steroids fromPolyporus umbellatus. Planta Medica 76:1755−58

doi: 10.1055/s-0030-1249926
[49]

Cockrum C, Kaneshiro KR, Rechtsteiner A, Tabuchi TM, Strome S. 2020. A primer for generating and using transcriptome data and gene sets. Development 147:dev193854

doi: 10.1242/dev.193854
[50]

Habtemariam S. 2020. Trametes versicolor (synn. Coriolus versicolor) polysaccharides in cancer therapy: targets and efficacy. Biomedicines 8:135

doi: 10.3390/biomedicines8050135
[51]

Tan XL, Guo L, Wang GH. 2016. Polyporus umbellatus inhibited tumor cell proliferation and promoted tumor cell apoptosis by down-regulating AKT in breast cancer. Biomedicine & Pharmacotherapy 83:526−35

doi: 10.1016/j.biopha.2016.06.049
[52]

Wang PA, Xiao H, Zhong JJ. 2020. CRISPR-Cas9 assisted functional gene editing in the mushroom Ganoderma lucidum. Applied. Applied Microbiology and Biotechnology 104:1661−71

doi: 10.1007/s00253-019-10298-z
[53]

Erbiai EH, da Silva LP, Saidi R, Lamrani Z, Esteves da Silva JCG, et al. 2021. Chemical composition, bioactive compounds, and antioxidant activity of two wild edible mushrooms Armillaria mellea and Macrolepiota procera from two countries (Morocco and Portugal). Biomolecules 11:575

doi: 10.3390/biom11040575
[54]

Sośnicka A, Górska S, Turło J. 2018. Biological, Chemical and Ecological Properties of Armillaria Mellea (Vahl) P. Kumm. EdukacjaBiologicznaiŚrodowiskowa 2:10−18

doi: 10.24131/3247.180202
[55]

Medihi NI, Haiyee ZA, Patmawati, Sukor R, Raseetha S. 2024. Exploring the functional properties and nutritional values of colored oyster mushrooms species (Pleurotus, Agaricomycetes): a review. International Journal of Medicinal Mushrooms 26:25−38

doi: 10.1615/IntJMedMushrooms.2024053563
[56]

Girma, W. , Temesgen, T. 2018. Application of Mushroom as Food and Medicine. Advances in Biotechnology& Microbiology 11(4):555817

doi: 10.19080/AIBM.2018.11.555817
[57]

Parola S, Chiodaroli L, Orlandi V, Vannin C, Panno L. 2017. Lentinula edodes and Pleurotus ostreatus: functional food with antioxidant - antimicrobial activity and an important source of Vitamin D and medicinal compounds. Functional Foods in Health and Disease 7:773

doi: 10.31989/ffhd.v7i10.374
[58]

Glamočlija J, Stojković D, Nikolić M, Ćirić A, Reis FS, et al. 2015. A comparative study on edible Agaricus mushrooms as functional foods. Food & Function 6:1900−10

doi: 10.1039/C4FO01135J
[59]

Kabel MA, Jurak E, Mäkelä MR, de Vries RP. 2017. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Applied Microbiology and Biotechnology 101:4363−69

doi: 10.1007/s00253-017-8294-5
[60]

Konno N, Nakade K, Nishitani Y, Mizuno M, Sakamoto Y. 2014. Lentinan degradation in the Lentinula edodes fruiting body during postharvest preservation is reduced by downregulation of the exo-β-1, 3-glucanase EXG2. Journal of Agricultural and Food Chemistry 62(32):8153−57

doi: 10.1021/jf501578w
[61]

Sakamoto Y, Minato KI, Nagai M, Mizuno M, Sato T. 2005. Characterization of the Lentinula edodesexg2 gene encoding a lentinan-degrading exo-β-1, 3-glucanase. Current Genetics 48:195−203

doi: 10.1007/s00294-005-0002-9
[62]

Brauer D, Kimmons T, Phillips M. 2002. Effects of management on the yield and high-molecular-weight polysaccharide content of shiitake (Lentinula edodes) mushrooms. Journal of Agricultural and Food Chemistry 50:5333−37

doi: 10.1021/jf020080l
[63]

Raman J, Jang KY, Oh YL, Oh M, Im JH, et al. 2021. Cultivation and nutritional value of prominent Pleurotus spp. an overview. Mycobiology 49:1−14

doi: 10.1080/12298093.2020.1835142
[64]

Salami A, Bankole F, Salako Y. 2017. Nutrient and mineral content of oyster mushroom (Pleurotus florida) grown on selected lignocellulosic substrates. Journal of Advances in Biology & Biotechnology 15:1−7

doi: 10.9734/jabb/2017/35876
[65]

Bao D, Gong M, Zheng H, Chen M, Zhang L, et al. 2013. Sequencing and comparative analysis of the straw mushroom (Volvariella volvacea) genome. PLoS One 8:e58294

doi: 10.1371/journal.pone.0058294
[66]

Khan BA, Sahoo NR, Pal US, Nayak R, Bakhara CK, et al. 2021. Development of a packaging, storage and transportation cabinet for paddy straw mushroom. Journal of Food Science and Technology 58:2377−84

doi: 10.1007/s13197-020-04750-6
[67]

Elsayed EA, El Enshasy H, Wadaan MAM, Aziz R. 2014. Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators of Inflammation 2014:805841

doi: 10.1155/2014/805841
[68]

Chakraborty S, Beura M, Sharma SK, Singh A, Dahuja A, et al. 2023. Lentinan, β-glucan from Shiitake (Lentinula edodes): a review on structure, conformational transition, and gastro-intestinal interaction contributing towards its anti-diabetic potential. Trends in Food Science & Technology 142:104224

doi: 10.1016/j.jpgs.2023.104224
[69]

Ahmad MF, Wahab S, Ali Ahmad F, Ashraf SA, Abullais SS, et al. 2022. Ganoderma lucidum: a potential pleiotropic approach of ganoderic acids in health reinforcement and factors influencing their production. Fungal Biology Reviews 39:100−25

doi: 10.1016/j.fbr.2021.12.003
[70]

Feng W, Guo Z, Jin Q, Shen Y, Song T, et al. 2024. A comparative transcriptomic and proteomic analysis of the Pileus of Agaricus Agaricus bisporus during its different developmental phases. Agriculture 14:2226

doi: 10.3390/agriculture14122226
[71]

Sutthibutpong T, Posansee K, Liangruksa M, Termsaithong T, Piyayotai S, et al. 2024. Combining deep learning and structural modeling to identify potential acetylcholinesterase inhibitors from Hericium erinaceus. ACS Omega 9:16311−21

doi: 10.1021/acsomega.3c10459
[72]

Pk MMU, O'Sullivan J, Pervin R, Rahman M. 2021. Antioxidant of Pleurotus ostreatus (Jacq. ) P. Kumn and lymphoid cancer cells. Cancer Amsterdam: Elsevier 427−37

doi: 10.1016/b978-0-12-819547-5.00038-9
[73]

Łysakowska P, Sobota A, Wirkijowska A. 2023. Medicinal mushrooms: their bioactive components, nutritional value and application in functional food production—a review. Molecules 28:5393

doi: 10.3390/molecules28145393
[74]

Puppala N, Nayak SN, Sanz-Saez A, Chen C, Devi MJ, et al. 2023. Sustaining yield and nutritional quality of peanuts in harsh environments: Physiological and molecular basis of drought and heat stress tolerance. Frontiers in Genetics 14:1121462

doi: 10.3389/fgene.2023.1121462
[75]

Zhang Y, Feng J, Wang P, Xia J, Li X, et al. 2019. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans. Gene709: 8-16. Gene 709:8−16

doi: 10.1016/j.gene.2019.04.079
[76]

Asmamaw M, Zawdie B. 2021. Mechanism and applications of CRISPR/cas-9-mediated genome editing. Biologics: Targets and Therapy 15:353−61

doi: 10.2147/BTT.S326422
[77]

Choi YJ, Eom H, Yang SH, Nandre R, Kim S, et al. 2023. Heterokaryosis, the main obstacle in the generation of PPO1-edited Agaricus bisporus by CRISPR/Cas9 system. Scientia Horticulturae 318:112095

doi: 10.1016/j.scienta.2023.112095
[78]

Komon-Zelazowska M, Bissett J, Zafari D, Hatvani L, Manczinger L, et al. 2007. Genetically closely related but phenotypically divergent Trichoderma species cause green mold disease in oyster mushroom farms worldwide. Applied and Environmental Microbiology 73:7415−26

doi: 10.1128/AEM.01059-07
[79]

Boontawon T, Nakazawa T, Inoue C, Osakabe K, Kawauchi M, et al. 2021. Efficient genome editing with CRISPR/Cas9 in Pleurotus ostreatus. AMB Express 11:30

doi: 10.1186/s13568-021-01193-w
[80]

Shang CH, Zhu F, Li N, Ou-Yang X, Shi L, et al. 2008. Cloning and characterization of a gene encoding HMG-CoA reductase from Ganoderma lucidum and its functional identification in yeast. Bioscience, Biotechnology, and Biochemistry 72:1333−39

doi: 10.1271/bbb.80011
[81]

Samanta MK, Dey A, Gayen S. 2016. CRISPR/Cas9: an advanced tool for editing plant genomes. Transgenic Research 25:561−73

doi: 10.1007/s11248-016-9953-5
[82]

Rani P, Kalyani N, Prathiba K. 2008. Evaluation of lignocellulosic wastes for production of edible mushrooms. Applied Biochemistry and Biotechnology 151:151−59

doi: 10.1007/s12010-008-8162-y
[83]

Hjort C, Cole J, Frébort I. 2021. European genome editing regulations: threats to the European bioeconomy and unfit for purpose. EFB Bioeconomy Journal 1:100001

doi: 10.1016/j.bioeco.2021.100001
[84]

Wei X, Pandohee J, Xu B. 2024. Recent developments and emerging trends in dietary vitamin D sources and biological conversion. Critical Reviews in Food Science and Nutrition 64:10121−37

doi: 10.1080/10408398.2023.2220793
[85]

Herath V. 2016. Small family, big impact: in silico analysis of DREB2 transcription factor family in rice. Computational Biology and Chemistry 65:128−39

doi: 10.1016/j.compbiolchem.2016.10.012
[86]

Barh A, Sharma VP, Annepu SK, Kamal S, Bairwa R. 2019. Round the year cultivation of Pleurotus species in India. Mushroom Research 28(2):139−43

doi: 10.36036/MR.28.2.2020.97595
[87]

Tangjang L, Titel M, Tenya R. 2022. Effect of Substrate Pre-treatment methods on the fruit body production of Pleurotus sajor-caju (Fr. ) Singer. Journal of Bioresources 9(2):53−56

doi: 10.5281/zenodo.8396481
[88]

Bhanushali RM, Hetal KP. 2020. Screening & Optimization Study on Fungal Proteases and their Applications. Mukt Shabd Journal 9(6):7324−38

[89]

Thacharodi A, Singh P, Meenatchi R, Tawfeeq Ahmed ZH, Kumar RRS, et al. 2024. Revolutionizing healthcare and medicine: The impact of modern technologies for a healthier future—a comprehensive review. Health Care Science 3:329−49

doi: 10.1002/hcs2.115
[90]

Tiwari P, Dufossé L. 2023. Focus and insights into the synthetic biology-mediated chassis of economically important fungi for the production of high-value metabolites. Microorganisms 11:1141

doi: 10.3390/microorganisms11051141
[91]

Su D, Zhang JX, Tie M, Xue SW, Zhao X, et al. 2024. Selenium speciation analysis of selenium-enriched Shiitake mushrooms (Lentinula edodes) by HPLC-ESI-MS. Journal of Food Composition and Analysis 136:106829

doi: 10.1016/j.jfca.2024.106829
[92]

Spivey A. 2004. Systems biology: the big picture. Environmental Health Perspectives 112:A938−A943

doi: 10.2307/3838204
[93]

Rabie AM. 2022. Potent inhibitory activities of the adenosine analogue cordycepin on SARS-CoV-2 replication. ACS Omega 7(3):2960−69

doi: 10.1021/acsomega.1c05998
[94]

Zou H, Li C, Wei X, Xiao Q, Tian X, et al. 2024. Expression of the polyphenol oxidase gene MdPPO7 is modulated by MdWRKY3 to regulate browning in sliced apple fruit. Plant Physiology 197:kiae614

doi: 10.1093/plphys/kiae614
[95]

Agarwal M, Shrivastava N, Padh H. 2008. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Reports 27:617−31

doi: 10.1007/s00299-008-0507-z
[96]

Dedousi M, Melanouri EM, Karayannis D, Kaminarides EI, Diamantopoulou P. 2024. Utilization of spent substrates and waste products of mushroom cultivation to produce new crops of Pleurotus ostreatus, Pleurotus eryngii and Agaricus bisporus. Carbon Resources Conversion 7:100196

doi: 10.1016/j.crcon.2023.08.001
[97]

Liu D, Pujiana D, Wang Y, Zhang Z, Zheng L, et al. 2019. Comparative transcriptomic analysis identified differentially expressed genes and pathways involved in the interaction between Tremella fuciformis and Annulohypoxylon stygium. Antonie. Antonie Van Leeuwenhoek 112:1675−89

doi: 10.1007/s10482-019-01294-4
[98]

Sudheer S, Bai RG, Muthoosamy K, Tuvikene R, Gupta VK, et al. 2022. Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: a critical review. Environmental Research 204:111963

doi: 10.1016/j.envres.2021.111963
[99]

Rai SN, Mishra D, Singh P, Singh MP, Vamanu E, et al. 2023. Biosynthesis and bioapplications of nanomaterials from mushroom products. Current Pharmaceutical Design 29:1002−8

doi: 10.2174/1381612829666230417083133
[100]

Youssef MS, Ahmed SI, Mohamed IMA, Abdel-Kareem MM. 2023. Biosynthesis, spectrophotometric follow-up, characterization, and variable antimicrobial activities of Ag nanoparticles prepared by edible macrofungi. Biomolecules 13:1102

doi: 10.3390/biom13071102
[101]

Roy S, Ezati P, Rhim JW. 2021. Gelatin/carrageenan-based functional films with carbon dots from enoki mushroom for active food packaging applications. ACS Applied Polymer Materials 3(12):6437−45

doi: 10.1021/acsapm.1c01175
[102]

Gur T. 2022. Green synthesis, characterizations of silver nanoparticles using sumac (Rhus coriaria L. ) plant extract and their antimicrobial and DNA damage protective effects. Frontiers in Chemistry 10:968280

doi: 10.3389/fchem.2022.968280
[103]

Aygün A, Özdemir S, Gülcan M, Cellat K, Şen F. 2020. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. Journal of Pharmaceutical and Biomedical Analysis 178:112970

doi: 10.1016/j.jpba.2019.112970
[104]

Debnath G, Das P, Saha AK. 2019. Green synthesis of silver nanoparticles using mushroom extract of Pleurotus giganteus: characterization, antimicrobial, and α-amylase inhibitory activity. BioNanoScience 9:611−19

doi: 10.1007/s12668-019-00650-y
[105]

Sujatha S, Tamilselvi S, Subha K, Panneerselvam A. 2013. Studies on biosynthesis of silver nanoparticles using mushroom and its antibacterial activities. International Journal of Current Microbiology and Applied Sciences 2(12):605−14

[106]

Fozia F, Ahmad N, Buoharee ZA, Ahmad I, Aslam M, et al. 2022. Characterization and evaluation of antimicrobial potential of Trigonella incise (linn) mediated biosynthesized silver nanoparticles. Molecules 27:4618

doi: 10.3390/molecules27144618
[107]

Gul A, Fozia, Shaheen A, Ahmad I, Khattak B, et al. 2021. Green synthesis, characterization, enzyme inhibition, antimicrobial potential, and cytotoxic activity of plant mediated silver nanoparticle using Ricinus communis leaf and root extracts. Biomolecules 11:206

doi: 10.3390/biom11020206
[108]

Irshad A, Sarwar N, Sadia H, Malik K, Javed I, et al. 2020. Comprehensive facts on dynamic antimicrobial properties of polysaccharides and biomolecules-silver nanoparticle conjugate. International Journal of Biological Macromolecules 145:189−96

doi: 10.1016/j.ijbiomac.2019.12.089
[109]

González A, Cruz M, Losoya C, Nobre C, Loredo A, et al. 2020. Edible mushrooms as a novel protein source for functional foods. Food & Function 11:7400−14

doi: 10.1039/D0FO01746A
[110]

Yu GJ, Wang M, Huang J, Yin YL, Chen YJ, et al. 2012. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. PLoS One 7:e44031

doi: 10.1371/journal.pone.0044031
[111]

Jafernik K, Ładniak A, Blicharska E, Czarnek K, Ekiert H, et al. 2023. Chitosan-based nanoparticles as effective drug delivery systems—a review. Molecules 28:1963

doi: 10.3390/molecules28041963
[112]

Choukaife H, Seyam S, Alallam B, Doolaanea AA, Alfatama M. 2022. Current advances in chitosan nanoparticles based oral drug delivery for colorectal cancer treatment. International Journal of Nanomedicine 17:3933−66

doi: 10.2147/IJN.S375229
[113]

Sun Q, Li J, Le T. 2018. Zinc oxide nanoparticle as a novel class of antifungal agents: current advances and future perspectives. Journal of Agricultural and Food Chemistry 66(43):11209−20

doi: 10.1021/acs.jafc.8b03210
[114]

Barclay TG, Day CM, Petrovsky N, Garg S. 2019. Review of polysaccharide particle-based functional drug delivery. Carbohydrate Polymers 221:94−112

doi: 10.1016/j.carbpol.2019.05.067
[115]

Paula FS, Tatti E, Abram F, Wilson J, O'Flaherty V. 2017. Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. Journal of Environmental Management 196:476−86

doi: 10.1016/j.jenvman.2017.03.038
[116]

Mohd Ariffin MA, Ramli MI, Zainol Z, Mohd Amin MN, Ismail M, et al. 2021. Enhanced IoT-based climate control for oyster mushroom cultivation using fuzzy logic approach and NodeMCU microcontroller. Pertanika Journal of Science and Technology 29(4):1−2

doi: 10.47836/pjst.29.4.34
[117]

Budzyńska S, Siwulski M, Budka A, Kalač P, Niedzielski P, et al. 2022. Mycoremediation of flotation tailings with Agaricus bisporus. Journal of Fungi 8:883

doi: 10.3390/jof8080883
[118]

Kathiria A, Barot P, Paliwal M, Shastri A. 2024. IoT-assisted mushroom cultivation in agile environment. In Advances in Data and Information Sciences. Singapore: Springer Nature. pp. 299−308 doi: 10.1007/978-981-99-6906-7_26

[119]

Rahman H, Faruq MO, Bin Abdul Hai T, Rahman W, Hossain MM, et al. 2022. IoT enabled mushroom farm automation with Machine Learning to classify toxic mushrooms in Bangladesh. Journal of Agriculture and Food Research 7:100267

doi: 10.1016/j.jafr.2021.100267
[120]

Angral PK, Thakur R. 2021. Different automatic monitoring and controlling technique for mushrooms. Turkish Journal of Computer and Mathematics Education 12(11):3363−69

[121]

Jahan Pinky N, Mohidul Islam SM, Sharmin Alice R. 2019. Edibility detection of mushroom using ensemble methods. International Journal of Image, Graphics and Signal Processing 11:55−62

doi: 10.5815/ijigsp.2019.04.05
[122]

Reddy NRS. 2022. Smart farming: making your mushroom plants talk to you. TechUva. Telangana

[123]

Vij A, Vijendra S, Jain A, Bajaj S, Bassi A, et al. 2020. IoT and machine learning approaches for automation of farm irrigation system. Procedia Computer Science 167:1250−57

doi: 10.1016/j.procs.2020.03.440
[124]

Shirur M, Barh A, Annepu SK. 2020. Standardization of Training Modules on Mushroom Cultivation Technology. Journal of Agricultural Extension Management 20(2):103

[125]

Grimm D, Kuenz A, Rahmann G. 2021. Integration of mushroom production into circular food chains. Organic Agriculture 11:309−17

doi: 10.1007/s13165-020-00318-y
[126]

Vieira O, Conceição A, Cunha RB, Machado EV, Almeida G. 2022. A new circular economy approach for integrated production of tomatoes and mushrooms. Saudi Journal of Biological Sciences 29(4):2756−65

doi: 10.1016/j.sjbs.2021.12.058
[127]

Gupta S, Summuna B, Gupta M, Annepu SK. 2018. Edible mushrooms: cultivation, bioactive molecules, and health benefits. In Bioactive Molecules in Food. Reference Series in Phytochemistry, eds. Mérillon JM, Ramawat K. Cham: Springer. pp. 1−33 doi: 10.1007/978-3-319-54528-8_86-1

[128]

Choi JW, Yoon Y, Lee JH, Kim CK, Hong YP, et al. 2018. Recent research trends of post-harvest technology for king oyster mushroom (Pleurotus eryngii). Journal of Mushroom 16(3):131−39

doi: 10.14480/JM.2018.16.3.131
[129]

Nandhini R, Poovizhi S, Jose P, Ranjitha R, Anila S. 2017. Arduino based Smart Irrigation System using IoT. Proc. 3rd National Conference on Intelligent Information and Computing Technologies, IICT '17, R V S College of Engineering and Technology, Coimbatore, India. pp. 1−5

[130]

Blundell R, Camilleri E, Baral B, Karpiński TM, Neza E, et al. 2023. The phytochemistry of Ganoderma species and their medicinal potentials. The American Journal of Chinese Medicine 51:859−82

doi: 10.1142/s0192415x23500404
[131]

Virtanen A, Korhonen L. 2024. Development of a web-based automation system utilizing DHT22, BH1750, MQ-135, and soil moisture sensors for climate and environmental control in vertical farming structures. International Journal of Research in Advanced Electronics Engineering 5:11−16

doi: 10.22271/27084558.2024.v5.i2a.40
[132]

Ray PC, Yu H, Fu PP. 2009. Toxicity and environmental risks of nanomaterials: challenges and future needs. Journal of Environmental Science and Health Part C, Environmental Carcinogenesis & Ecotoxicology Reviews 27:1−35

doi: 10.1080/10590500802708267
[133]

Kendal E. 2022. Ethical, legal and social implications of emerging technology (ELSIET) symposium. Journal of Bioethical Inquiry 19:363−70

doi: 10.1007/s11673-022-10197-5
[134]

Touch V, Tan DKY, Cook BR, Liu DL, Cross R, et al. 2024. Smallholder farmers' challenges and opportunities: Implications for agricultural production, environment and food security. Journal of Environmental Management 370:122536

doi: 10.1016/j.jenvman.2024.122536
[135]

Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, et al. 2023. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nature Biotechnology 41:500−12

doi: 10.1038/s41587-022-01527-4
[136]

Anzalone AV, Koblan LW, Liu DR. 2020. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nature Biotechnology 38:824−44

doi: 10.1038/s41587-020-0561-9