[1]

Lai A, Zhou D, Li F, Shen Z, Zou J, et al. 2025. A series-parallel inverter-based WPT system for electric vehicles with different input voltages and Z classes. IEEE Transactions on Power Electronics 40(6):8847−58

doi: 10.1109/TPEL.2025.3535675
[2]

Fu N, Deng J, Wang Z, Chen D. 2023. Dual-phase-shift control strategy with switch-controlled capacitor for overall efficiency optimization in wireless power transfer system. IEEE Transactions on Vehicular Technology 72(6):7304−17

doi: 10.1109/TVT.2023.3241695
[3]

Hui SR, Yang Y, Zhang C. 2023. Wireless power transfer: a paradigm shift for the next generation. IEEE Journal of Emerging and Selected Topics in Power Electronics 11(3):2412−27

doi: 10.1109/JESTPE.2023.3237792
[4]

Zhou Y, Liu C, Huang Y. 2020. Wireless power transfer for implanted medical application: a review. Energies 13(11):2837

doi: 10.3390/en13112837
[5]

Sagar A, Kashyap A, Nasab MA, Padmanaban S, Bertoluzzo M, et al. 2023. A comprehensive review of the recent development of wireless power transfer technologies for electric vehicle charging systems. IEEE Access 11:83703−51

doi: 10.1109/ACCESS.2023.3300475
[6]

Mahesh A, Chokkalingam B, Mihet-Popa L. 2021. Inductive wireless power transfer charging for electric vehicles – a review. IEEE access 9:137667−713

doi: 10.1109/ACCESS.2021.3116678
[7]

İleri R, Ağçal A. 2023. Limiting magnetic exposures using ferrite core and shielding in wireless charging of mobile phones. Microwave and Optical Technology Letters 65(12):3204−10

doi: 10.1002/mop.33871
[8]

Doğan TH, Ağçal A. 2024. DDD coil design for wireless charging of unmanned aerial vehicles. Microwave and Optical Technology Letters 66(1):e33985

doi: 10.1002/mop.33985
[9]

Zhu JQ, Ban YL, Zhang Y, Yan Z, Xu RM, et al. 2019. Three-coil wireless charging system for metal-cover smartphone applications. IEEE Transactions on Power Electronics 35(5):4847−58

doi: 10.1109/TPEL.2019.2944845
[10]

Wang Y, Sun Z, Guan Y, Xu D. 2023. Overview of megahertz wireless power transfer. Proceedings of the IEEE 111(5):528−54

doi: 10.1109/JPROC.2023.3265689
[11]

Cirimele, V., Freschi, F., & Mitolo, M. 2023. I charge, therefore I drive: current state of electric vehicle charging systems. IEEE Power and Energy Magazine 21(6):91−97

doi: 10.1109/MPE.2023.3308227
[12]

Sekiya H, Tokano K, Zhu W, Komiyama Y, Nguyen K. 2023. Design procedure of load-independent class-E WPT systems and its application in robot arm. IEEE Transactions on Industrial Electronics 70(10):10014−23

doi: 10.1109/TIE.2022.3220818
[13]

Chen F, Garnier H, Deng Q, Kazimierczuk MK, Zhuan X. 2019. Control-oriented modeling of wireless power transfer systems with phase-shift control. IEEE Transactions on Power Electronics 35(2):2119−34

doi: 10.1109/TPEL.2019.2920863
[14]

Jakowluk W, Świercz M. 2023. Application-oriented input spectrum design in closed-loop identification. Applied Sciences 13(11):6552

doi: 10.3390/app13116552
[15]

Rezazade S, Shahirinia A, Naghash R, Rasekh N, Afjei SE. 2023. A novel efficient hybrid compensation topology for wireless power transfer. IEEE Transactions on Industrial Electronics 70(3):2277−85

doi: 10.1109/TIE.2022.3169840
[16]

Chen K, Pan J, Yang Y, Cheng KWE. 2022. Stability improvement and overshoot damping of SS-compensated EV wireless charging systems with user-end buck converters. IEEE Transactions on Vehicular Technology 71(8):8354−66

doi: 10.1109/TVT.2022.3175743
[17]

Lu F, Zhang H, Hofmann H, Su W, Mi CC. 2017. A dual-coupled LCC-compensated IPT system with a compact magnetic coupler. IEEE Transactions on Power Electronics 33(7):6391−402

doi: 10.1109/TPEL.2017.2748391
[18]

Wang H, Sun J, Cheng KWE. 2023. A compact and integrated magnetic coupler design with cross-coupling elimination utilizing LCC-S compensation network for building attached photovoltaic systems. IEEE Transactions on Magnetics 59(11):8401205

doi: 10.1109/TMAG.2023.3278073
[19]

Li S, Li W, Deng J, Nguyen TD, Mi CC. 2015. A double-sided LCC compensation network and its tuning method for wireless power transfer. IEEE Transactions on Vehicular Technology 64(6):2261−73

doi: 10.1109/TVT.2014.2347006
[20]

Wang X, Xu J, Leng M, Ma H, He S. 2021. A hybrid control strategy of LCC-S compensated WPT system for wide output voltage and ZVS range with minimized reactive current. IEEE Transactions on Industrial Electronics 68(9):7908−20

doi: 10.1109/TIE.2020.3013788
[21]

Huang Z, Wang L, Zhang Y, Liu R. 2020. Design of WPT RF power supply based on dual directional coupler and capacitor array impedance matching network. IEEE Access 8:68209−18

doi: 10.1109/ACCESS.2020.2983492
[22]

Komeda S, Kifune H. 2019. Constant load voltage characteristics in a parallel-parallel-compensated wireless power transfer system. 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), 27−30 May 2019, Busan, Korea (South). USA: IEEE. pp. 2252−57 doi: 10.23919/ICPE2019-ECCEAsia42246.2019.8796948

[23]

Shevchenko V, Husev O, Strzelecki R, Pakhaliuk B, Poliakov N, et al. 2019. Compensation topologies in IPT systems: standards, requirements, classification, analysis, comparison and application. IEEE Access 7:120559−80

doi: 10.1109/ACCESS.2019.2937891
[24]

Mohan SS, del Mar Hershenson M, Boyd SP, Lee TH. 1999. Simple accurate expressions for planar spiral inductances. IEEE Journal of solid-state circuits 34(10):1419−24

doi: 10.1109/4.792620
[25]

Yi Z, Li M, Muneer B, Zhu Q. 2019. High-efficiency mid-range inductive power transfer employing alternative-winding coils. IEEE Transactions on Power Electronics 34(7):6706−21

doi: 10.1109/TPEL.2018.2872047