[1]

Russelle, MP. 2014. Alfalfa: after an 8,000-year journey, the "Queen of Forages" stands poised to enjoy renewed popularity. American Scientist 89:252−61

[2]

Butler, A. 1999. The small-seeded legumes: an enigmatic prehistoric resource. Acta Palaeobotanica 35:1

[3]

Shen C, Du H, Chen Z, Lu H, Zhu, F, et al. 2020. The chromosome-level genome sequence of the autotetraploid alfalfa and resequencing of core germplasms provide genomic resources for alfalfa research. Molecular Plant 13:1250−61

doi: 10.1016/j.molp.2020.07.003
[4]

Chen H, Zeng Y, Yang Y, Huang L, Tang B, et al. 2020. Allele-aware chromosome-level genome assembly and efficient transgene-free genome editing for the autotetraploid cultivated alfalfa. Nature Communications 11:2494

doi: 10.1038/s41467-020-16338-x
[5]

Long R, Zhang F, Zhang Z, Li M, Chen L, et al. 2022. Genome assembly of alfalfa cultivar Zhongmu-4 and identification of SNPs associated with agronomic traits. Genomics, Proteomics & Bioinformatics 20:14−28

doi: 10.1016/j.gpb.2022.01.002
[6]

Pichersky E, Gang DR. 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends in Plant Science 5:439−45

doi: 10.1016/s1360-1385(00)01741-6
[7]

Pichersky E, Noel JP, Dudareva N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Science 311:808−11

doi: 10.1126/science.1118510
[8]

D'Auria JC, Gershenzon J. 2005. The secondary metabolism of Arabidopsis thaliana: growing like a weed. Current Opinion in Plant Biology 8:308−16

doi: 10.1016/j.pbi.2005.03.012
[9]

Towler DA, Gordon JI, Adams SP, Glaser L. 1988. The biology and enzymology of eukaryotic protein acylation. Annual Review of Biochemistry 57:69−99

doi: 10.1146/annurev.biochem.57.1.69
[10]

Ciarkowska A, Ostrowski M, Starzyńska E, Jakubowska A. 2019. Plant SCPL acyltransferases: multiplicity of enzymes with various functions in secondary metabolism. Phytochemistry Reviews 18:303−16

doi: 10.1007/s11101-018-9593-x
[11]

Ahmad MZ, Li P, She G, Xia E, Benedito VA, et al. 2020. Genome-wide analysis of serine carboxypeptidase-like acyltransferase gene family for evolution and characterization of enzymes involved in the biosynthesis of Galloylated Catechins in the tea plant (Camellia sinensis). Frontiers in Plant Science 11:848

doi: 10.3389/fpls.2020.00848
[12]

Fu R, Zhang P, Jin G, Wang L, Qi S, et al. 2021. Versatility in acyltransferase activity completes chicoric acid biosynthesis in purple coneflower. Nature Communications 12:1563

doi: 10.1038/s41467-021-21853-6
[13]

Rottem S. 2002. Sterols and acylated proteins in mycoplasmas. Biochemical and Biophysical Research Communications 292:1289−92

doi: 10.1006/bbrc.2001.2023
[14]

Zhu D, Chu W, Wang Y, Yan H, Chen Z, et al. 2018. Genome-wide identification, classification and expression analysis of the serine carboxypeptidase-like protein family in poplar. Physiologia Plantarum 162:333−52

doi: 10.1111/ppl.12642
[15]

Bontpart T, Cheynier V, Ageorges A, Terrier N. 2015. BAHD or SCPL acyltransferase? What a dilemma for acylation in the world of plant phenolic compounds. New Phytologist 208:695−707

doi: 10.1111/nph.13498
[16]

Mugford ST, Milkowski C. 2012. Serine carboxypeptidase-like acyltransferases from plants. Methods in Enzymology 516:279−97

doi: 10.1016/b978-0-12-394291-3.00006-x
[17]

Soprano LL, Ferrero MR, Jacobs T, Couto AS, Duschak VG. 2023. Hallmarks of the relationship between host and Trypanosoma cruzi sulfated glycoconjugates along the course of Chagas disease. Frontiers in Cellular and Infection Microbiology 13:1028496

doi: 10.3389/fcimb.2023.1028496
[18]

Guerreiro J, Marhavý P. 2023. Unveiling the intricate mechanisms of plant defense. Frontiers in Plant Physiology 1:1285373

doi: 10.3389/fphgy.2023.1285373
[19]

Peng H, Feng H, Zhang T, Wang Q. 2023. Plant defense mechanisms in plant-pathogen interactions. Frontiers in Plant Science 14:1292294

doi: 10.3389/fpls.2023.1292294
[20]

Moura, DS, Bergey DR, Ryan CA. 2001. Characterization and localization of a wound-inducible type I serine-carboxypeptidase from leaves of tomato plants (Lycopersicon esculentum Mill.). Planta 212:222−30

doi: 10.1007/s004250000380
[21]

Liu H, Wang X, Zhang H, Yang Y, Ge X, et al. 2008. A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420:57−65

doi: 10.1016/j.gene.2008.05.006
[22]

Xu X, Zhang L, Zhao W, Fu L, Han Y, et al. 2021. Genome-wide analysis of the serine carboxypeptidase-like protein family in Triticum aestivum reveals TaSCPL184-6D is involved in abiotic stress response. BMC Genomics 22:350

doi: 10.1186/s12864-021-07647-6
[23]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49

doi: 10.1093/molbev/msy096
[24]

Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[25]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[26]

O'Rourke JA, Fu F, Bucciarelli B, Yang SS, Samac DA, et al. 2015. The Medicago sativa gene index 1.2: a web-accessible gene expression atlas for investigating expression differences between Medicago sativa subspecies. BMC Genomics 16:502

doi: 10.1186/s12864-015-1718-7
[27]

Dong X, Deng H, Ma W, Zhou Q, Liu Z. 2021. Genome-wide identification of the MADS-box transcription factor family in autotetraploid cultivated alfalfa (Medicago sativa L.) and expression analysis under abiotic stress. BMC Genomics 22:603

doi: 10.1186/s12864-021-07911-9
[28]

Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. 2019. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnology 37:907−15

doi: 10.1038/s41587-019-0201-4
[29]

Liao Y, Smyth GK, Shi W. 2014. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923−30

doi: 10.1093/bioinformatics/btt656
[30]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15:550

doi: 10.1186/s13059-014-0550-8
[31]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[32]

Cercós M, Urbez C, Carbonell J. 2003. A serine carboxypeptidase gene (PsCP), expressed in early steps of reproductive and vegetative development in Pisum sativum, is induced by gibberellins. Plant Molecular Biology 51:165−74

doi: 10.1023/a:1021142403856
[33]

Chen J, Li WQ, Jia YX. 2020. The serine carboxypeptidase-like gene SCPL41 negatively regulates membrane lipid metabolism in Arabidopsis thaliana. Plants 9:696

doi: 10.3390/plants9060696
[34]

Feng Y, Yu Z. 2009. Genome-wide comparative study of rice and Arabidopsis serine carboxypeptidase-like protein families. Journal of Zhejiang University Agriculture and Life Sciences 35:1−15

doi: 10.3785/j.issn.1008-9209.2009.01.001
[35]

Feng Y, Xue Q. 2006. The serine carboxypeptidase like gene family of rice (Oryza sativa L. ssp. Japonica). Functional & Integrative Genomics 6:14−24

doi: 10.1007/s10142-005-0131-8
[36]

He L, Liu Q, Han S. 2024. Genome-wide analysis of serine carboxypeptidase-like genes in soybean and their roles in stress resistance. International Journal of Molecular Sciences 25:6712

doi: 10.3390/ijms25126712
[37]

Wang Y, Zhao J, Deng X, Wang, P, Geng S, et al. 2022. Genome-wide analysis of serine carboxypeptidase-like protein (SCPL) family and functional validation of Gh_SCPL42 unchromosome conferring cotton Verticillium der Verticillium wilt stress in Gossypium Hirsutum. BMC Plant Biology 22:421

doi: 10.1186/s12870-022-03804-5
[38]

Jin X, Wei Y, Chen Z, Wang Z, Zhang G, et al. 2023. Identification of potato serine carboxypeptidase-like protein StSCPL family and analysis of its response to drought stress. Agricultural Research in the Arid Areas 41:9−20

doi: 10.7606/j.issn.1000-7601.2023.04.02