[1]

Bramel P, Chen L (Eds.). 2019. A global strategy for the conservation and use of tea genetic resources. Bonn, Germany: Global Crop Diversity Trust

[2]

Bell MM. 2004. Farming for us all: Practical agriculture and the cultivation of sustainability. US: Pennsylvania State University Press

[3]

Chen L, Yao M, Zhao L, Wang X. 2006. Recent research progresses on molecular biology of tea plant (Camellia sinensis). In Floriculture, Ornamental and Plant Biotechnology, ed. da Silva JAT. vol 4. Japan: Global Science Books. pp. 426−37.

[4]

Fang W, Meinhardt LW, Tan H, Zhou L, Mischke S, et al. 2014. Varietal identification of tea (Camellia sinensis) using nanofluidic array of single nucleotide polymorphism (SNP) markers. Horticulture Research 1:14035

doi: 10.1038/hortres.2014.35
[5]

Fang W, Meinhardt LW, Tan H, Zhou L, Mischke S, et al. 2016. Identification of the varietal origin of processed loose-leaf tea based on analysis of a single leaf by SNP nanofluidic array. The Crop Journal 4:304−12

doi: 10.1016/j.cj.2016.02.001
[6]

Food and Agriculture Organization of the United Nations (FAO). 2022. International tea market: Market situation, prospects, and emerging issues. https://openknowledge.fao.org/server/api/core/bitstreams/e1d8588a-ddba-4b49-9897-311611391a76/content

[7]

Ma J, Huang L, Ma C, Jin J, Li C, et al. 2015. Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq). PLoS One 10:e0128798

doi: 10.1371/journal.pone.0128798
[8]

Yang H, Wei C, Liu H, Wu J, Li Z, et al. 2016. Genetic divergence between Camellia sinensis and its wild relatives revealed via genome-wide SNPs from RAD sequencing. PLoS One 11:e0151424

doi: 10.1371/journal.pone.0151424
[9]

Zhang X, Chen S, Shi L, Gong D, Zhang S, et al. 2021. Haplotype-resolved genome assembly provides insights into evolutionary history of the tea plant Camellia sinensis. Nature Genetics 53:1250−59

doi: 10.1038/s41588-021-00895-y
[10]

Banerjee B. 1992. Botanical classification of tea. In Tea Cultivation to Consumption, eds. Wilson KC, Clifford MN. London, UK: Chapman and Hall. pp. 25−51.

[11]

Wang X, Feng H, Chang Y, Ma C, Wang L, et al. 2020. Population sequencing enhances understanding of tea plant evolution. Nature Communications 11:4447

doi: 10.1038/s41467-020-18228-8
[12]

Wight W. 1962. Tea classification revised. Current Science 31:298−99

[13]

Sealy JR. 1958. A revision of the genus Camellia. London: Royal Horticultural Society. 239 pp.

[14]

Kingdom-Ward F. 1950. Does wild tea exist? Nature 165:297−99

doi: 10.1038/165297a0
[15]

Barua PK. 1965. Classification of the tea plant. Two and A Bud 12:13−27

[16]

Visser T. 1969. Camellia sinensis (L.) O. Kuntze. outlines of perennial crop breeding in the tropics. The Netherlands: Landbouwhoge School Wageningen. pp. 459−93

[17]

Paul S, Wachira FN, Powell W, Waugh R. 1997. Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theoretical and Applied Genetics 94:255−63

doi: 10.1007/s001220050408
[18]

Mishra RK, Sen-Mandi S. 2001. DNA fingerprinting and genetic relationship study of tea plants using amplified fragment length polymorphism (AFLP) technique. Indian Journal of Plant Genetic Resources 14:148−149

[19]

Magoma GN, Wachira FN, Obanda M, Imbuga M, Agong SG. 2000. The use of catechins as biochemical markers in diversity studies of tea (Camellia sinensis). Genetic Resources and Crop Evolution 47:107−14

doi: 10.1023/A:1008772902917
[20]

Meegahakumbura MK, Wambulwa MC, Thapa KK, Li M, Möller M, et al. 2016. Indications for three independent domestication events for the tea plant [Camellia sinensis (L.) O. Kuntze] and new insights into the origin of tea germplasm in China and India revealed by nuclear microsatellites. PLoS One 11:e0155369

doi: 10.1371/journal.pone.0155369
[21]

Wambulwa MC, Meegahakumbura MK, Kamunya S, Muchugi A, Möller M, et al. 2017. Multiple origins and a narrow gene pool characterize the African tea germplasm: concordant patterns revealed by nuclear and plastid DNA markers. Scientific Reports 7:14053

doi: 10.1038/s41598-017-04228-0
[22]

Meegahakumbura MK, Wambulwa MC, Li M, Thapa KK, Sun Y, MöllerM et al. 2018. Domestication origin and breeding history of the tea plant (Camellia sinensis) in China and India based on nuclear microsatellites and cpDNA sequence data. Frontiers in Plant Science 8:2270

doi: 10.3389/fpls.2017.02270
[23]

Murray MG, Thompson WF. 1980. Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Research 8:4321−25

doi: 10.1093/nar/8.19.4321
[24]

Singh ID, Bera B. 1994. Biodiversity in Indian Camellias-Problems and prospects of conservation. Indian Journal of Plant Genetic Resources 7:125−31

[25]

Wang J, Lin M, Crenshaw A, Hutchinson A, Hicks B, et al. 2009. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays. BMC Genomics 10:561

doi: 10.1186/1471-2164-10-561
[26]

Fluidigm Corporation. 2011. Fluidigm SNP Genotyping User Guide. Rev H1, PN 68000098. South San Francisco, CA: Fluidigm Corporation

[27]

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Molecular Ecology 14:2611−20

doi: 10.1111/j.1365-294X.2005.02553.x
[28]

Puechmaille SJ. 2016. The program structure does not reliably recover the correct population structure when sampling is uneven: subsampling and new estimators alleviate the problem. Molecular Ecology Resources 16:608−27

doi: 10.1111/1755-0998.12512
[29]

Li Y, Liu J. 2018. StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Molecular Ecology Resources 18:176−77

doi: 10.1111/1755-0998.12719
[30]

Jakobsson M, Rosenberg NA. 2007. CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801−6

doi: 10.1093/bioinformatics/btm233
[31]

Peakall R, Smouse PE. 2006. GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6:288−95

doi: 10.1111/j.1471-8286.2005.01155.x
[32]

Peakall R, Smouse PE. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537−39

doi: 10.1093/bioinformatics/bts460
[33]

Nei M. 1972. Genetic distance between populations. The American Naturalist 106:283−92

doi: 10.1086/282771
[34]

Dieringer D, Schlötterer C. 2003. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite datasets. Molecular Ecology Notes 3:167−69

doi: 10.1046/j.1471-8286.2003.00351.x
[35]

Felsenstein J. 1989. PHYLIP-phylogeny inference package (Version 3.2). Cladistics 5:164−66

[36]

Rambaut A. 2009. Molecular evolution, phylogenetics and epidemiology: FigTree v1.3.1 2006–2009. http://tree.bio.ed.ac.uk/software/figtree

[37]

Bezbaruah HP, Dutta AC. 1977. Tea germplasm collection at Tocklai experimental station. Two and A Bud 24:22−30

[38]

Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1:47−50

[39]

Roberts EAH, Wight W, Wood DJ. 1958. Paper ghromatography as an aid to the taxonomy of Thea camellias. New Phytologist 57:211−25

doi: 10.1111/j.1469-8137.1958.tb05307.x
[40]

Konwar BK. 1999. Biodiversity of tea in Northeast India and their conservation at Tocklai. Two and a Bud 46:7−12

[41]

Singh ID. 1979. Indian tea germplasm and its contribution to the world's tea industry [India]. Two and a Bud 26:10−13

[42]

Harler CR. 1933. The Culture and Marketing of Tea. 1st Edition. London: Humphrey Milford. pp. 228−47.

[43]

Borthakur D. 2012. Wild tea exploration in Margherita and nearby areas. Tocklai News 18(4):1

[44]

Baruah P. 2015. Assam Tea: Discovery, Contribution of the Singphos, Method of Preparation and Traditional Habit of Tea Drinking Among the Singphos of Assam. The Assam Review & Tea News 104:14−24

[45]

Baruah P. 2017. Wild Teas of Assam and Northeast India. Journal of Tea Science Research 7:34−39

[46]

Baruah P. 2019. Tea: An important constituent of biodiversity of Assam, Northeast India. International Journal of Agriculture Sciences 11:8986−89

[47]

Zhao D, Yang J, Yang S, Kato K, Luo J. 2014. Genetic diversity and domestication origin of tea plant Camellia taliensis (Theaceae) as revealed by microsatellite markers. BMC Plant Biology 14:14

doi: 10.1186/1471-2229-14-14
[48]

Meyer RS, DuVal AE, Jensen HR. 2012. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytologist 196:29−48

doi: 10.1111/j.1469-8137.2012.04253.x
[49]

Sen CT. 2004. Food culture in India. Connecticut: Greenwood Publishing Group. 232 pp.

[50]

Bezbaruah HP, Singh ID. 1980. Characteristics of Tocklai released planting materials. Two and A Bud 27:6−8

[51]

Rajkumar R, Venkatesalu V, Manivel L. 1993. Clonal variation in carbon dioxide assimilation in tea. Photosynthetica 29:609−12

[52]

Borthakur D, Saikia J, Roy S. 2017. Stomatal density as a selection criterion for developing tea varieties with high physiological efficiency. Journal of Plant Physiology and Breeding 7:121−31