[1]

Sun X, Jiao C, Schwaninger H, Chao CT, Ma Y, et al. 2020. Phased diploid genome assemblies and pan-genomes provide insights into the genetic history of apple domestication. Nature Genetics 52:1423−32

doi: 10.1038/s41588-020-00723-9
[2]

Wang YY, Cheng YH, Chen KE, Tsay YF. 2018. Nitrate transport, signaling, and use efficiency. Annual Review of Plant Biology 69:85−122

doi: 10.1146/annurev-arplant-042817-040056
[3]

Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, et al. 2009. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America 106:3041−46

doi: 10.1073/pnas.0813417106
[4]

de Vries FT, Bardgett RD. 2016. Plant community controls on short-term ecosystem nitrogen retention. New Phytologist 210:861−74

doi: 10.1111/nph.13832
[5]

Tegeder M, Masclaux-Daubresse C. 2018. Source and sink mechanisms of nitrogen transport and use. New Phytologist 217:35−53

doi: 10.1111/nph.14876
[6]

Jia Z, von Wirén N. 2020. Signaling pathways underlying nitrogen-dependent changes in root system architecture: from model to crop species. Journal of Experimental Botany 71:4393−404

doi: 10.1093/jxb/eraa033
[7]

Vidal EA, Alvarez JM, Araus V, Riveras E, Brooks MD, et al. 2020. Nitrate in 2020: thirty years from transport to signaling networks. The Plant Cell 32:2094−119

doi: 10.1105/tpc.19.00748
[8]

Hu B, Wang W, Ou S, Tang J, Li H, et al. 2015. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47:834−38

doi: 10.1038/ng.3337
[9]

Parker JL, Newstead S. 2014. Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507:68−72

doi: 10.1038/nature13116
[10]

Zeng H, Chen H, Zhang M, Ding M, Xu F, et al. 2024. Plasma membrane H+-ATPases in mineral nutrition and crop improvement. Trends in Plant Science 29:978−94

doi: 10.1016/j.tplants.2024.02.010
[11]

Chen J, Liu X, Liu S, Fan X, Zhao L, et al. 2020. Co-overexpression of OsNAR2.1 and OsNRT2.3a increased agronomic nitrogen use efficiency in transgenic rice plants. Frontiers in Plant Science 11:1245

doi: 10.3389/fpls.2020.01245
[12]

Feng H, Li B, Zhi Y, Chen J, Li R, et al. 2017. Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Plant Cell Reports 36:1287−96

doi: 10.1007/s00299-017-2153-9
[13]

Zhang Y, Tateishi-Karimata H, Endoh T, Jin Q, Li K, et al. 2022. High-temperature adaptation of an OsNRT2.3 allele is thermoregulated by small RNAs. Science Advances 8:eadc9785

doi: 10.1126/sciadv.adc9785
[14]

Fan X, Tang Z, Tan Y, Zhang Y, Luo B, et al. 2016. Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proceedings of the National Academy of Sciences of the United States of America 113:7118−23

doi: 10.1073/pnas.1525184113
[15]

Gao T, Liu X, Xu S, Yu X, Zhang D, et al. 2024. Melatonin confers tolerance to nitrogen deficiency through regulating MdHY5 in apple plants. Plant Journal 117:1115−29

doi: 10.1111/tpj.16542
[16]

Tahir MM, Wang H, Ahmad B, Liu Y, Fan S, et al. 2021. Identification and characterization of NRT gene family reveals their critical response to nitrate regulation during adventitious root formation and development in apple rootstock. Scientia Horticulturae 275:109642

doi: 10.1016/j.scienta.2020.109642
[17]

Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, et al. 2012. The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. The Plant Cell 24:245−58

doi: 10.1105/tpc.111.092221
[18]

Lin SH, Kuo HF, Canivenc G, Lin CS, Lepetit M, et al. 2008. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell 20:2514−28

doi: 10.1105/tpc.108.060244
[19]

Li JY, Fu YL, Pike SM, Bao J, Tian W, et al. 2010. The Arabidopsis nitrate transporter NRT1.8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. The Plant Cell 22:1633−46

doi: 10.1105/tpc.110.075242
[20]

Chen KE, Chen HY, Tseng CS, Tsay YF. 2020. Improving nitrogen use efficiency by manipulating nitrate remobilization in plants. Nature Plants 6:1126−35

doi: 10.1038/s41477-020-00758-0
[21]

Yan S, Yu B, Ming F, Liang Y, Zhong Y, et al. 2022. CsIVP modulates low nitrogen and high-temperature resistance in cucumber. Plant & Cell Physiology 63(5):605−17

doi: 10.1093/pcp/pcac020
[22]

Siddiqui MN, Pandey K, Bhadhury SK, Sadeqi B, Schneider M, et al. 2023. Convergently selected NPF2.12 coordinates root growth and nitrogen use efficiency in wheat and barley. New Phytologist 238:2175−93

doi: 10.1111/nph.18820
[23]

Morales de los Ríos L, Corratgé-Faillie C, Raddatz N, Mendoza I, Lindahl M, et al. 2021. The Arabidopsis protein NPF6.2/NRT1.4 is a plasma membrane nitrate transporter and a target of protein kinase CIPK23. Plant Physiology and Biochemistry 168:239−51

doi: 10.1016/j.plaphy.2021.10.016
[24]

Lu YT, Liu DF, Wen TT, Fang ZJ, Chen SY, et al. 2022. Vacuolar nitrate efflux requires multiple functional redundant nitrate transporter in Arabidopsis thaliana. Frontiers in Plant Science 13:926809

doi: 10.3389/fpls.2022.926809
[25]

Chen ZH, Wang Y, Wang JW, Babla M, Zhao C, et al. 2016. Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels in Arabidopsis. New Phytologist 209:1456−69

doi: 10.1111/nph.13714
[26]

Olas JJ, Wahl V. 2019. Tissue-specific NIA1 and NIA2 expression in Arabidopsis thaliana. Plant Signaling & Behavior 14:1656035

doi: 10.1080/15592324.2019.1656035
[27]

Bian C, Demirer GS, Oz MT, Cai YM, Witham S, et al. 2025. Conservation and divergence of regulatory architecture in nitrate-responsive plant gene circuits. The Plant Cell 37:koaf124

doi: 10.1093/plcell/koaf124
[28]

Fredes I, Moreno S, Díaz FP, Gutiérrez RA. 2019. Nitrate signaling and the control of Arabidopsis growth and development. Current Opinion in Plant Biology 47:112−18

doi: 10.1016/j.pbi.2018.10.004
[29]

Ren YR, Zhao Q, Yang YY, Zhang R, Wang XF, et al. 2021. Interaction of BTB-TAZ protein MdBT2 and DELLA protein MdRGL3a regulates nitrate-mediated plant growth. Plant Physiology 186:750−66

doi: 10.1093/plphys/kiab065
[30]

Liu X, Liu HF, Li HL, An XH, Song LQ, et al. 2022. MdMYB10 affects nitrogen uptake and reallocation by regulating the nitrate transporter MdNRT2.4-1 in the red flesh apple. Horticulture Research 9:uhac016

doi: 10.1093/hr/uhac016
[31]

Zhang D, Yang K, Kan Z, Dang H, Feng S, et al. 2021. The regulatory module MdBT2-MdMYB88/MdMYB124-MdNRTs regulates nitrogen usage in apple. Plant Physiology 185:1924−42

doi: 10.1093/plphys/kiaa118
[32]

An JP, Qu FJ, Yao JF, Wang XN, You CX, et al. 2017. The bZIP transcription factor MdHY5 regulates anthocyanin accumulation and nitrate assimilation in apple. Horticulture Research 4:17023

doi: 10.1038/hortres.2017.23
[33]

Feng ZQ, Li T, Wang X, Sun WJ, Zhang TT, et al. 2022. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. Plant Science 316:111158

doi: 10.1016/j.plantsci.2021.111158
[34]

Liu GD, An XH, Rui L, Liu RX, Li HL, et al. 2024. Auxin response factor MdARF18 regulates MdNRT1.1 to affect nitrogen utilization in apple. Fruit Research 4:e027

doi: 10.48130/frures-0024-0021
[35]

Zhang GB, Yi HY, Gong JM. 2014. The Arabidopsis ethylene/jasmonic acid-NRT signaling module coordinates nitrate reallocation and the trade-off between growth and environmental adaptation. The Plant Cell 26:3984−98

doi: 10.1105/tpc.114.129296
[36]

de Zelicourt A, Colcombet J, Hirt H. 2016. The role of MAPK modules and ABA during abiotic stress signaling. Trends in Plant Science 21:677−85

doi: 10.1016/j.tplants.2016.04.004
[37]

Wang Z, Ren Z, Cheng C, Wang T, Ji H, et al. 2020. Counteraction of ABA-mediated inhibition of seed germination and seedling establishment by ABA signaling terminator in Arabidopsis. Molecular Plant 13:1284−97

doi: 10.1016/j.molp.2020.06.011
[38]

Wang M, Zhang P, Liu Q, Li G, Di D, et al. 2020. TaANR1-TaBG1 and TaWabi5-TaNRT2s/NARs link ABA metabolism and nitrate acquisition in wheat roots. Plant Physiology 182:1440−53

doi: 10.1104/pp.19.01482
[39]

Liu YJ, Gao N, Ma QJ, Zhang JC, Wang X, et al. 2021. The MdABI5 transcription factor interacts with the MdNRT1.5/MdNPF7.3 promoter to fine-tune nitrate transport from roots to shoots in apple. Horticulture Research 8:236

doi: 10.1038/s41438-021-00667-z
[40]

West GM, Pascal BD, Ng LM, Soon FF, Melcher K, et al. 2013. Protein conformation ensembles monitored by HDX reveal a structural rationale for abscisic acid signaling protein affinities and activities. Structure 21:229−35

doi: 10.1016/j.str.2012.12.001
[41]

Fujita Y, Yoshida T, Yamaguchi-Shinozaki K. 2013. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiologia Plantarum 147:15−27

doi: 10.1111/j.1399-3054.2012.01635.x
[42]

Gao S, Gao J, Zhu X, Song Y, Li Z, et al. 2016. ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Molecular Plant 9:1272−85

doi: 10.1016/j.molp.2016.06.006
[43]

Hwang K, Susila H, Nasim Z, Jung JY, Ahn JH. 2019. Arabidopsis ABF3 and ABF4 transcription factors act with the NF-YC complex to regulate SOC1 expression and mediate drought-accelerated flowering. Molecular Plant 12:489−505

doi: 10.1016/j.molp.2019.01.002
[44]

Wang YH, Que F, Li T, Zhang RR, Khadr A, et al. 2021. DcABF3, an ABF transcription factor from carrot, alters stomatal density and reduces ABA sensitivity in transgenic Arabidopsis. Plant Science 302:110699

doi: 10.1016/j.plantsci.2020.110699
[45]

Contreras-López O, Vidal EA, Riveras E, Alvarez JM, Moyano TC, et al. 2022. Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate. Proceedings of the National Academy of Sciences of the United States of America 119:e2107879119

doi: 10.1073/pnas.2107879119
[46]

Wei X, Lu W, Mao L, Han X, Wei X, et al. 2020. ABF2 and MYB transcription factors regulate feruloyl transferase FHT involved in ABA-mediated wound suberization of kiwifruit. Journal of Experimental Botany 71:305−17

doi: 10.1093/jxb/erz430
[47]

Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1:641−46

doi: 10.1038/nprot.2006.97
[48]

Yang YY, An XH, Rui L, Liu GD, Tian Y, et al. 2023. MdSnRK1.1 interacts with MdGLK1 to regulate abscisic acid-mediated chlorophyll accumulation in apple. Horticulture Research 11(2):uhad288

doi: 10.1093/hr/uhad288
[49]

Ren YR, Zhao Q, Yang YY, Zhang TE, Wang XF, et al. 2021. The apple 14-3-3 protein MdGRF11 interacts with the BTB protein MdBT2 to regulate nitrate deficiency-induced anthocyanin accumulation. Horticulture Research 8:22

doi: 10.1038/s41438-020-00457-z
[50]

Zhou MM, Yu ZH, Gao HN, Li MR, Wu YT, et al. 2023. Ectopic expression of an apple ABCG transporter gene MdABCG25 increases plant cuticle wax accumulation and abiotic stress tolerance. Fruit Research 3:43

doi: 10.48130/frures-2023-0043
[51]

Liu W, Mei Z, Yu L, Gu T, Li Z, et al. 2023. The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyanin synthesis in red-fleshed apples. Horticulture Research 10(5):uhad049

doi: 10.1093/hr/uhad049
[52]

Krouk, G. 2016. Hormones and nitrate: a two-way connection. Plant Molecular Biology 91:599−606

doi: 10.1007/s11103-016-0463-x
[53]

Pike S, Gao F, Kim MJ, Kim SH, Schachtman DP, et al. 2014. Members of the NPF3 transporter subfamily encode pathogen-inducible nitrate/nitrite transporters in grapevine and Arabidopsis. Plant & Cell Physiology 55:162−70

doi: 10.1093/pcp/pct167
[54]

Tal I, Zhang Y, Jørgensen ME, Pisanty O, Barbosa ICR, et al. 2016. The Arabidopsis NPF3 protein is a GA transporter. Nature Communications 7:11486

doi: 10.1038/ncomms11486
[55]

Yang J, Wang M, Li W, He X, Teng W, et al. 2019. Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnology Journal 17:1823−33

doi: 10.1111/pbi.13103
[56]

Alves LM, Valkov VT, Vittozzi Y, Ariante A, Notte A, et al. 2024. The Lotus japonicus NPF4.6 gene, encoding for a dual nitrate and ABA transporter, plays a role in the lateral root elongation process and is not involved in the N2-fixing nodule development. Plant Physiology and Biochemistry 216:109144

doi: 10.1016/j.plaphy.2024.109144
[57]

Filleur S, Dorbe MF, Cerezo M, Orsel M, Granier F, et al. 2001. An Arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Letters 489:220−24

doi: 10.1016/S0014-5793(01)02096-8
[58]

Lezhneva L, Kiba T, Feria-Bourrellier AB, Lafouge F, Boutet-Mercey S, et al. 2014. The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant Journal 80:230−41

doi: 10.1111/tpj.12626
[59]

Zhao C, Cai S, Wang Y, Chen ZH. 2016. Loss of nitrate reductases NIA1 and NIA2 impairs stomatal closure by altering genes of core ABA signaling components in Arabidopsis. Plant Signaling & Behavior 11:e1183088

doi: 10.1080/15592324.2016.1183088
[60]

Wang Y, Hou Y, Qiu J, Wang H, Wang S, et al. 2020. Abscisic acid promotes jasmonic acid biosynthesis via a 'SAPK10-bZIP72-AOC' pathway to synergistically inhibit seed germination in rice (Oryza sativa). New Phytologist 228:1336−53

doi: 10.1111/nph.16774