[1]

Aziz A, Noreen S, Khalid W, Ejaz A, Faiz ul Rasool I, et al. 2023. Pumpkin and pumpkin byproducts: phytochemical constitutes, food application and health benefits. ACS Omega 8(26):23346−57

doi: 10.1021/acsomega.3c02176
[2]

Tangjaidee P, Swedlund P, Xiang J, Yin H, Quek SY. 2022. Selenium-enriched plant foods: selenium accumulation, speciation, and health functionality. Frontiers in Nutrition 9:962312

doi: 10.3389/fnut.2022.962312
[3]

Winkel LHE, Johnson CA, Lenz M, Grundl T, Leupin OX, et al. 2012. Environmental selenium research: from microscopic processes to global understanding. Environmental Science & Technology 46(2):571−79

doi: 10.1021/es203434d
[4]

Qu L, Xu J, Dai Z, Elyamine AM, Huang W, et al. 2023. Selenium in soil-plant system: transport, detoxification and bioremediation. Journal of Hazardous Materials 452:131272

doi: 10.1016/j.jhazmat.2023.131272
[5]

Abdullah, Wani KI, Hayat K, Naeem M, Aftab T. 2025. Multifaceted role of selenium in plant physiology and stress resilience: a review. Plant Science 355:112456

doi: 10.1016/j.plantsci.2025.112456
[6]

Qin X, Wang Z, Lai J, Liang Y, Qian K. 2025. The synthesis of selenium nanoparticles and their applications in enhancing plant stress resistance: a review. Nanomaterials 15(4):301

doi: 10.3390/nano15040301
[7]

Gupta M, Gupta S. 2016. An overview of selenium uptake, metabolism, and toxicity in plants. Frontiers in Plant Science 7:2074

doi: 10.3389/fpls.2016.02074
[8]

Yang X, Liao X, Yu L, Rao S, Chen Q, et al. 2022. Combined metabolome and transcriptome analysis reveal the mechanism of selenate influence on the growth and quality of cabbage (Brassica oleracea var. capitata L.). Food Research International 156:111135

doi: 10.1016/j.foodres.2022.111135
[9]

Amerian M, Palangi A, Gohari G, Ntatsi G. 2024. Enhancing salinity tolerance in cucumber through Selenium biofortification and grafting. BMC Plant Biology 24(1):24

doi: 10.1186/s12870-023-04711-z
[10]

Yu Y, Yang Y, Guo Y, Pan M, Hao W. 2025. Exogenous selenium enhances cadmium stress tolerance by improving physiological characteristics of Artemisia argyi seedlings. Scientific Reports 15(1):3450

doi: 10.1038/s41598-025-87340-w
[11]

Ikram S, Li Y, Lin C, Yi D, Heng W, et al. 2024. Selenium in plants: a nexus of growth, antioxidants, and phytohormones. Journal of Plant Physiology 296:154237

doi: 10.1016/j.jplph.2024.154237
[12]

Rao S, Yu T, Cong X, Lai X, Xiang J, et al. 2021. Transcriptome, proteome, and metabolome reveal the mechanism of tolerance to selenate toxicity in Cardamine violifolia. Journal of Hazardous Materials 406:124283

doi: 10.1016/j.jhazmat.2020.124283
[13]

Wang J, Liu L, Zhang H, Zhang D, Dai Z, et al. 2024. Exogenous indole-3-acetic acid promotes the plant growth and accumulation of selenium in grapevine under selenium stress. BMC Plant Biology 24(1):426

doi: 10.1186/s12870-024-05105-5
[14]

Wang J, Lu Y, Xing S, Yang J, Liu L, et al. 2024. Transcriptome analysis reveals the promoting effects of exogenous melatonin on the selenium uptake in grape under selenium stress. Frontiers in Plant Science 15:1447451

doi: 10.3389/fpls.2024.1447451
[15]

Grant K, Carey NM, Mendoza M, Schulze J, Pilon M, et al. 2011. Adenosine 5'-phosphosulfate reductase (APR2) mutation in Arabidopsis implicates glutathione deficiency in selenate toxicity. Biochemical Journal 438(2):325−35

doi: 10.1042/BJ20110025
[16]

Sun C, Liu L, Wang L, Li B, Jin C, et al. 2021. Melatonin: a master regulator of plant development and stress responses. Journal of Integrative Plant Biology 63(1):126−45

doi: 10.1111/jipb.12993
[17]

Zhang L, Chu C. 2022. Selenium uptake, transport, metabolism, reutilization, and biofortification in rice. Rice 15(1):30

doi: 10.1186/s12284-022-00572-6
[18]

Lintschinger J, Fuchs N, Moser J, Kuehnelt D, Goessler W. 2000. Selenium-enriched sprouts. A raw material for fortified cereal-based diets. Journal of Agricultural and Food Chemistry 48(11):5362−68

doi: 10.1021/jf000509d
[19]

Zhu YG, Pilon-Smits EAH, Zhao FJ, Williams PN, Meharg AA. 2009. Selenium in higher plants: understanding mechanisms for biofortification and phytoremediation. Trends in Plant Science 14(8):436−42

doi: 10.1016/j.tplants.2009.06.006
[20]

Xiao T, Qiang J, Sun H, Luo F, Li X, et al. 2024. Overexpression of wheat selenium-binding protein gene TaSBP-a enhances plant growth and grain selenium accumulation under spraying sodium selenite. International Journal of Molecular Sciences 25(13):7007

doi: 10.3390/ijms25137007
[21]

Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, et al. 2010. Current status of vegetable grafting: diffusion, grafting techniques, automation. Scientia Horticulturae 127(2):93−105

doi: 10.1016/j.scienta.2010.08.003
[22]

Zhang T, Wang Y, Ma X, Ouyang Z, Deng L, et al. 2022. Melatonin alleviates copper toxicity via improving ROS metabolism and antioxidant defense response in tomato seedlings. Antioxidants 11(4):758

doi: 10.3390/antiox11040758
[23]

Zhang T, Sun K, Chang X, Ouyang Z, Meng G, et al. 2022. Comparative physiological and transcriptomic analyses of two contrasting pepper genotypes under salt stress reveal complex salt tolerance mechanisms in seedlings. International Journal of Molecular Sciences 23(17):9701

doi: 10.3390/ijms23179701
[24]

Li X, Luo Y, Zeng C, Zhong Q, Xiao Z, et al. 2023. Selenium accumulation in plant foods and selenium intake of residents in a moderately selenium-enriched area of Mingyueshan, Yichun, China. Journal of Food Composition and Analysis 116:105089

doi: 10.1016/j.jfca.2022.105089
[25]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12(4):357−60

doi: 10.1038/nmeth.3317
[26]

Sun H, Wu S, Zhang G, Jiao C, Guo S, et al. 2017. Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Molecular Plant 10(10):1293−306

doi: 10.1016/j.molp.2017.09.003
[27]

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33(3):290−95

doi: 10.1038/nbt.3122
[28]

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15(12):550

doi: 10.1186/s13059-014-0550-8
[29]

Abbas HMK, Huang HX, Wang AJ, Wu TQ, Xue SD, et al. 2020. Metabolic and transcriptomic analysis of two Cucurbita moschata germplasms throughout fruit development. BMC Genomics 21(1):365

doi: 10.1186/s12864-020-6774-y
[30]

Jiang H, Lin W, Jiao H, Liu J, Chan L, et al. 2021. Uptake, transport, and metabolism of selenium and its protective effects against toxic metals in plants: a review. Metallomics 13(7):mfab040

doi: 10.1093/mtomcs/mfab040
[31]

Byeon Y, Lee HY, Lee K, Back K. 2014. Caffeic acid O-methyltransferase is involved in the synthesis of melatonin by methylating N-acetylserotonin in Arabidopsis. Journal of Pineal Research 57(2):219−27

doi: 10.1111/jpi.12160
[32]

Hawrylak-Nowak B, Matraszek R, Pogorzelec M. 2015. The dual effects of two inorganic selenium forms on the growth, selected physiological parameters and macronutrients accumulation in cucumber plants. Acta Physiologiae Plantarum 37(2):41

doi: 10.1007/s11738-015-1788-9
[33]

Van Hoewyk D, Takahashi H, Inoue E, Hess A, Tamaoki M, et al. 2008. Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Physiologia Plantarum 132(2):236−53

doi: 10.1111/j.1399-3054.2007.01002.x
[34]

Li HF, McGrath SP, Zhao FJ. 2008. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist 178(1):92−102

doi: 10.1111/j.1469-8137.2007.02343.x
[35]

Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, et al. 2012. Grain accumulation of selenium species in rice (Oryza sativa L.). Environmental Science & Technology 46(10):5557−64

doi: 10.1021/es203871j
[36]

Zhang L, Hu B, Li W, Che R, Deng K, et al. 2014. OsPT2, a phosphate transporter, is involved in the active uptake of selenite in rice. New Phytologist 201(4):1183−91

doi: 10.1111/nph.12596
[37]

Inostroza-Blancheteau C, Reyes-Díaz M, Alberdi M, Godoy K, Rojas-Lillo Y, et al. 2013. Influence of selenite on selenium uptake, differential antioxidant performance and gene expression of sulfate transporters in wheat genotypes. Plant and Soil 369(1):47−59

doi: 10.1007/s11104-012-1492-0
[38]

Cao D, Liu Y, Ma L, Jin X, Guo G, et al. 2018. Transcriptome analysis of differentially expressed genes involved in selenium accumulation in tea plant (Camellia sinensis). PLoS One 13(6):e0197506

doi: 10.1371/journal.pone.0197506
[39]

Kataoka T, Hayashi N, Yamaya T, Takahashi H. 2004. Root-to-shoot transport of sulfate in Arabidopsis. Evidence for the role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiology 136(4):4198−204

doi: 10.1104/pp.104.045625
[40]

Ren H, Li X, Guo L, Wang L, Hao X, et al. 2022. Integrative transcriptome and proteome analysis reveals the absorption and metabolism of selenium in tea plants [Camellia sinensis (L.) O. Kuntze]. Frontiers in Plant Science 13:848349

doi: 10.3389/fpls.2022.848349
[41]

Oshanova D, Kurmanbayeva A, Bekturova A, Soltabayeva A, Nurbekova Z, et al. 2021. Level of sulfite oxidase activity affects sulfur and carbon metabolism in Arabidopsis. Frontiers in Plant Science 12:690830

doi: 10.3389/fpls.2021.690830
[42]

Ren H, Zhang Y, Zhong M, Hussian J, Tang Y, et al. 2023. Calcium signaling-mediated transcriptional reprogramming during abiotic stress response in plants. Theoretical and Applied Genetics 136(10):210

doi: 10.1007/s00122-023-04455-2
[43]

Kudla J, Becker D, Grill E, Hedrich R, Hippler M, et al. 2018. Advances and current challenges in calcium signaling. New Phytologist 218(2):414−31

doi: 10.1111/nph.14966
[44]

Ravi B, Foyer CH, Pandey GK. 2023. The integration of reactive oxygen species (ROS) and calcium signalling in abiotic stress responses. Plant, Cell & Environment 46(7):1985−2006

doi: 10.1111/pce.14596
[45]

Wang C, Luan S. 2024. Calcium homeostasis and signaling in plant immunity. Current Opinion in Plant Biology 77:102485

doi: 10.1016/j.pbi.2023.102485
[46]

Dard A, Weiss A, Bariat L, Auverlot J, Fontaine V, et al. 2023. Glutathione-mediated thermomorphogenesis and heat stress responses in Arabidopsis thaliana. Journal of Experimental Botany 74(8):2707−25

doi: 10.1093/jxb/erad042
[47]

Bachhawat AK, Yadav S. 2018. The glutathione cycle: glutathione metabolism beyond the γ-glutamyl cycle. IUBMB Life 70(7):585−92

doi: 10.1002/iub.1756
[48]

Li Y, Liu Y, Zhang J. 2010. Advances in the research on the AsA-GSH cycle in horticultural crops. Frontiers of Agriculture in China 4(1):84−90

doi: 10.1007/s11703-009-0089-8
[49]

Kumar S, Trivedi PK. 2018. Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Frontiers in Plant Science 9:751

doi: 10.3389/fpls.2018.00751
[50]

He X, Wang C, Wang H, Li L, Wang C. 2020. The function of MAPK cascades in response to various stresses in horticultural plants. Frontiers in Plant Science 11:952

doi: 10.3389/fpls.2020.00952
[51]

Zhang M, Zhang S. 2022. Mitogen-activated protein kinase cascades in plant signaling. Journal of Integrative Plant Biology 64(2):301−41

doi: 10.1111/jipb.13215
[52]

Liu Y, Zhang S. 2004. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. The Plant Cell 16(12):3386−99

doi: 10.1105/tpc.104.026609
[53]

Li G, Meng X, Wang R, Mao G, Han L, et al. 2012. Dual-level regulation of ACC synthase activity by MPK3/MPK6 cascade and its downstream WRKY transcription factor during ethylene induction in Arabidopsis. PLoS Genetics 8(6):e1002767

doi: 10.1371/journal.pgen.1002767
[54]

Takahashi F, Yoshida R, Ichimura K, Mizoguchi T, Seo S, et al. 2007. The mitogen-activated protein kinase cascade MKK3–MPK6 is an important part of the jasmonate signal transduction pathway in Arabidopsis. The Plant Cell 19(3):805−18

doi: 10.1105/tpc.106.046581
[55]

Jagodzik P, Tajdel-Zielinska M, Ciesla A, Marczak M, Ludwikow A. 2018. Mitogen-activated protein kinase cascades in plant hormone signaling. Frontiers in Plant Science 9:1387

doi: 10.3389/fpls.2018.01387
[56]

Indumathi MC, Swetha K, Abhilasha KV, Siddappa S, Kumar SM, et al. 2024. Selenium ameliorates acetaminophen-induced oxidative stress via MAPK and Nrf2 pathways in mice. Biological Trace Element Research 202(6):2598−615

doi: 10.1007/s12011-023-03845-3
[57]

Colombage R, Singh MB, Bhalla PL. 2023. Melatonin and abiotic stress tolerance in crop plants. International Journal of Molecular Sciences 24(8):7447

doi: 10.3390/ijms24087447
[58]

Li MQ, Hasan MK, Li CX, Ahammed GJ, Xia XJ, et al. 2016. Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. Journal of Pineal Research 61(3):291−302

doi: 10.1111/jpi.12346