[1]

Ismail AM, Horie T. 2017. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology 68:405−34

doi: 10.1146/annurev-arplant-042916-040936
[2]

Sahab S, Suhani I, Srivastava V, Chauhan PS, Singh RP, et al. 2021. Potential risk assessment of soil salinity to agroecosystem sustainability: current status and management strategies. Science of the Total Environment 764:144164

doi: 10.1016/j.scitotenv.2020.144164
[3]

Tuteja N. 2007. Mechanisms of high salinity tolerance in plants. Methods in Enzymology 428:419−38

doi: 10.1016/S0076-6879(07)28024-3
[4]

Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP. 2020. Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology 11:1216

doi: 10.3389/fmicb.2020.01216
[5]

Ge Y, Li Y, Zhu YM, Bai X, Lv DK, et al. 2010. Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biology 10:153

doi: 10.1186/1471-2229-10-153
[6]

Zhao Y, Lu Z, He L. 2014. Effects of saline-alkaline stress on seed germination and seedling growth of Sorghum bicolor (L.) Moench. Applied Biochemistry and Biotechnology 173:1680−91

doi: 10.1007/s12010-014-0956-5
[7]

Guo R, Shi L, Yan C, Zhong X, Gu F, et al. 2017. Ionomic and metabolic responses to neutral salt or alkaline salt stresses in maize (Zea mays L.) seedlings. BMC Plant Biology 17:41

doi: 10.1186/s12870-017-0994-6
[8]

Fang S, Hou X, Liang X. 2021. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science 12:667458

doi: 10.3389/fpls.2021.667458
[9]

van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403−33

doi: 10.1146/annurev-arplant-050718-100005
[10]

Ramakrishna P, Gámez-Arjona FM, Bellani E, Martin-Olmos C, Escrig S, et al. 2025. Elemental cryo-imaging reveals SOS1-dependent vacuolar sodium accumulation. Nature 637:1228−33

doi: 10.1038/s41586-024-08403-y
[11]

Qi Y, Qiu QS. 2025. Dual roles of SOS1: Na+ extrusion and vacuolar compartmentation. Plant Communications 6:101423

doi: 10.1016/j.xplc.2025.101423
[12]

Yin X, Xia Y, Xie Q, Cao Y, Wang Z, et al. 2020. The protein kinase complex CBL10-CIPK8-SOS1 functions in Arabidopsis to regulate salt tolerance. Journal of Experimental Botany 71:1801−14

doi: 10.1093/jxb/erz549
[13]

Hong Y, Guan X, Wang X, Kong D, Yu S, et al. 2023. Natural variation in SlSOS2 promoter hinders salt resistance during tomato domestication. Horticulture Research 10:uhac244

doi: 10.1093/hr/uhac244
[14]

Wang Z, Hong Y, Li Y, Shi H, Yao J, et al. 2021. Natural variations in SlSOS1 contribute to the loss of salt tolerance during tomato domestication. Plant Biotechnology Journal 19:20−22

doi: 10.1111/pbi.13443
[15]

Zhou X, Li J, Wang Y, Liang X, Zhang M, et al. 2022. The classical SOS pathway confers natural variation of salt tolerance in maize. New Phytologist 236:479−94

doi: 10.1111/nph.18278
[16]

Liu J, Zhang C, Sun H, Zang Y, Meng X, et al. 2024. A natural variation in SlSCaBP8 promoter contributes to the loss of saline-alkaline tolerance during tomato improvement. Horticulture Research 11:uhae055

doi: 10.1093/hr/uhae055
[17]

Lu KK, Song RF, Guo JX, Zhang Y, Zuo JX, et al. 2023. CycC1;1–WRKY75 complex-mediated transcriptional regulation of SOS1 controls salt stress tolerance in Arabidopsis. The Plant Cell 35:2570−91

doi: 10.1093/plcell/koad105
[18]

Jiang Z, Zhou X, Tao M, Yuan F, Liu L, et al. 2019. Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572:341−46

doi: 10.1038/s41586-019-1449-z
[19]

Chen J, Yu F, Liu Y, Du C, Li X, et al. 2016. FERONIA interacts with ABI2-type phosphatases to facilitate signaling cross-talk between abscisic acid and RALF peptide in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 113:E5519−E5527

doi: 10.1073/pnas.1608449113
[20]

Zhao C, Zayed O, Yu Z, Jiang W, Zhu P, et al. 2018. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 115:13123−28

doi: 10.1073/pnas.1816991115
[21]

Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, et al. 2015. Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350:438−41

doi: 10.1126/science.aac6014
[22]

Stephan AB, Kunz HH, Yang E, Schroeder JI. 2016. Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proceedings of the National Academy of Sciences of the United States of America 113:E5242−E5249

doi: 10.1073/pnas.1519555113
[23]

Yuan F, Yang H, Xue Y, Kong D, Ye R, et al. 2014. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367−71

doi: 10.1038/nature13593
[24]

Gasulla F, Barreno E, Parages ML, Cámara J, Jiménez C, et al. 2016. The role of phospholipase D and MAPK signaling cascades in the adaption of lichen microalgae to desiccation: changes in membrane lipids and phosphoproteome. Plant and Cell Physiology 57:1908−20

doi: 10.1093/pcp/pcw111
[25]

Thalmann M, Pazmino D, Seung D, Horrer D, Nigro A, et al. 2016. Regulation of leaf starch degradation by abscisic acid is important for osmotic stress tolerance in plants. The Plant Cell 28:1860−78

doi: 10.1105/tpc.16.00143
[26]

Li CH, Wang G, Zhao JL, Zhang LQ, Ai LF, et al. 2014. The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. The Plant Cell 26:2538−53

doi: 10.1105/tpc.114.125187
[27]

Zhao JL, Zhang LQ, Liu N, Xu SL, Yue ZL, et al. 2019. Mutual regulation of receptor-like kinase SIT1 and B'κ-PP2A shapes the early response of rice to salt stress. The Plant Cell 31:2131−51

doi: 10.1105/tpc.18.00706
[28]

Zhou YB, Liu C, Tang DY, Yan L, Wang D, et al. 2018. The receptor-like cytoplasmic kinase STRK1 phosphorylates and activates CatC, thereby regulating H2O2 homeostasis and improving salt tolerance in rice. The Plant Cell 30:1100−18

doi: 10.1105/tpc.17.01000
[29]

Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, et al. 2007. Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. The Plant Cell 19:1617−34

doi: 10.1105/tpc.105.035626
[30]

Yang Y, Wu Y, Ma L, Yang Z, Dong Q, et al. 2019. The Ca2+ sensor SCaBP3/CBL7 modulates plasma membrane H+-ATPase activity and promotes alkali tolerance in Arabidopsis. The Plant Cell 31:1367−84

doi: 10.1105/tpc.18.00568
[31]

Cao Y, Zhang M, Liang X, Li F, Shi Y, et al. 2020. Natural variation of an EF-hand Ca2+-binding-protein coding gene confers saline-alkaline tolerance in maize. Nature Communications 11:186

doi: 10.1038/s41467-019-14027-y
[32]

Zhang H, Yu F, Xie P, Sun S, Qiao X, et al. 2023. A Gγ protein regulates alkaline sensitivity in crops. Science 379:eade8416

doi: 10.1126/science.ade8416
[33]

Sun W, Zhang H, Yang S, Liu L, Xie P, et al. 2023. Genetic modification of Gγ subunit AT1 enhances salt-alkali tolerance in main graminaceous crops. National Science Review 10:nwad075

doi: 10.1093/nsr/nwad075
[34]

Guo SQ, Chen YX, Ju YL, Pan CY, Shan JX, et al. 2025. Fine-tuning gibberellin improves rice alkali-thermal tolerance and yield. Nature 639:162−71

doi: 10.1038/s41586-024-08486-7
[35]

Liu X, Shang C, Duan P, Yang J, Wang J, et al. 2025. The SlWRKY42-SlMYC2 module synergistically enhances tomato saline-alkali tolerance by activating the jasmonic acid signaling and spermidine biosynthesis pathway. Journal of Integrative Plant Biology 67:1254−73

doi: 10.1111/jipb.13839
[36]

Wei JW, Liu M, Zhao D, Du P, Yan L, et al. 2025. Melatonin confers saline-alkali tolerance in tomato by alleviating nitrosative damage and S-nitrosylation of H+-ATPase 2. The Plant Cell 37:koaf035

doi: 10.1093/plcell/koaf035
[37]

Pandey S. 2019. Heterotrimeric G-protein signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 70:213−38

doi: 10.1146/annurev-arplant-050718-100231
[38]

Zhang H, Xie P, Xu X, Xie Q, Yu F. 2021. Heterotrimeric G protein signalling in plant biotic and abiotic stress response. Plant Biology 23:20−30

doi: 10.1111/plb.13241
[39]

Subramaniam G, Trusov Y, Lopez-Encina C, Hayashi S, Batley J, et al. 2016. Type B heterotrimeric G protein γ-subunit regulates auxin and ABA signaling in tomato. Plant Physiology 170:1117−34

doi: 10.1104/pp.15.01675
[40]

Chakraborty N, Sharma P, Kanyuka K, Pathak RR, Choudhury D, et al. 2015. G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana. Plant Molecular Biology 89:559−76

doi: 10.1007/s11103-015-0374-2
[41]

Ninh TT, Gao W, Trusov Y, Zhao JR, Long L, et al. 2021. Tomato and cotton G protein beta subunit mutants display constitutive autoimmune responses. Plant Direct 5:e359

doi: 10.1002/pld3.359
[42]

Deng L, Wang H, Sun C, Li Q, Jiang H, et al. 2018. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. Journal of Genetics and Genomics 45:51−54

doi: 10.1016/j.jgg.2017.10.002