[1]

Department of Agricultural Extension (DOAE). Annual coffee production report 2016. Bangkok: Department of Agricultural Extension of Thailand

[2]

Weng C. 2018. Study on the situation and development of the coffee industry in Thailand. Thesis. Siam University, Bangkok, Thailand

[3]

Boot W. 2006. Variety is the spice of coffee. Geisha and other varietals. Roast Magazine 125:1−4

[4]

Guerreiro Filho O, Ramalho MAP, Andrade VT. 2018. Alcides Carvalho and the selection of Catuaí cultivar: interpreting the past and drawing lessons for the future. Crop Breeding and Applied Biotechnology 18:460−66

doi: 10.1590/1984-70332018v18n4p69
[5]

Chica-Acosta M, Ibarra-Arcila HE, Martínez JG. 2024. Assembly and characterization of the complete chloroplast genome of the Colombian coffee varieties Caturra Chiroso, Bourbon Chiroso and Chiroso, Coffea arabica L. (Rubiaceae), with insights on their phylogenetic relationships. Journal of Plant Biochemistry and Biotechnology 33:710−15

doi: 10.1007/s13562-024-00934-9
[6]

World Coffee Research. 2024. Arabica coffee varieties. https://varieties.worldcoffeeresearch.org/arabica/varieties

[7]

Chamyuang S, Owatworakit A, Intatha U, Duangphet S. 2021. Coffee pectin production: an alternative way for agricultural waste management in coffee farms. Science Asia 47:90−95

doi: 10.2306/scienceasia1513-1874.2021.S003
[8]

Geremu M, Tola YB, Sualeh A. 2016. Extraction and determination of total polyphenols and antioxidant capacity of red coffee (Coffea arabica L.) pulp of wet processing plants. Chemical and Biological Technologies in Agriculture 3:25

doi: 10.1186/s40538-016-0077-1
[9]

Corro G, Paniagua L, Pal U, Bañuelos F, Rosas M. 2013. Generation of biogas from coffee-pulp and cow-dung co-digestion: infrared studies of postcombustion emissions. Energy Conversion and Management 74:471−81

doi: 10.1016/j.enconman.2013.07.017
[10]

Bernas SM. 2011. Effect of coffee pulp compost and terrace on erosion, run off and nutrients loss from coffee plantation in Lahat. Journal of Tropical Soils 16:161−67

[11]

Huanhong K, Lumsangkul C, Arjin C, Sirilun S, Tangpao T, et al. 2025. Dietary supplementation of coffee pulp extract enhances growth performance and intestinal morphology in broiler chicken. Poultry Science 104:104873

doi: 10.1016/j.psj.2025.104873
[12]

Murlida E, Noviasari S, Nilda C, Rohaya S, Rahmi F, et al. 2021. Chemical characteristics of cascara tea from several varieties of coffee in Aceh Province. IOP Conference Series: Earth and Environmental Science 667:012078

doi: 10.1088/1755-1315/667/1/012078
[13]

Oktaviani L, Astuti DI, Rosmiati M, Abduh MY. 2020. Fermentation of coffee pulp using indigenous lactic acid bacteria with simultaneous aeration to produce cascara with a high antioxidant activity. Heliyon 6:e04462

doi: 10.1016/j.heliyon.2020.e04462
[14]

Sangta J, Wongkaew M, Tangpao T, Rachtanapun P, Chanway CP, et al. 2024. Application of coffee pulp-derived pectins as a novel coating spray to mitigate Paramyrothecium breviseta, an etiological agent inducing leaf spot disease in coffee. Process Safety and Environmental Protection 188:643−53

doi: 10.1016/j.psep.2024.06.005
[15]

Esquivel P, Jiménez VM. 2012. Functional properties of coffee and coffee by-products. Food Research International 46:488−95

doi: 10.1016/j.foodres.2011.05.028
[16]

Murthy PS, Madhava Naidu M. 2012. Sustainable management of coffee industry by-products and value addition—a review. Resources, Conservation and Recycling 66:45−58

doi: 10.1016/j.resconrec.2012.06.005
[17]

Reichembach LH, de Oliveira Petkowicz CL. 2020. Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties. Carbohydrate polymers 245:116473

doi: 10.1016/j.carbpol.2020.116473
[18]

Biratu G, Gonfa G, Bekele M, Woldemariam HW. 2024. Extraction and characterization of pectin from coffee (Coffea arabica L.) pulp obtained from four different coffee producing regions. International Journal of Biological Macromolecules 274:133321

doi: 10.1016/j.ijbiomac.2024.133321
[19]

Mellinas C, Ramos M, Jiménez A, Garrigós MC. 2020. Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 13:673

doi: 10.3390/ma13030673
[20]

Wongkaew M, Chaimongkol P, Leksawasdi N, Jantanasakulwong K, Rachtanapun P, et al. 2021. Mango peel pectin: recovery, functionality and sustainable uses. Polymers 13:3898

doi: 10.3390/polym13223898
[21]

Sangta J, Wongkaew M, Tangpao T, Withee P, Haituk S, et al. 2021. Recovery of polyphenolic fraction from arabica coffee pulp and its antifungal applications. Plants 10:1422

doi: 10.3390/plants10071422
[22]

Luna González A, Macías Lopez A, Taboada Gaytán OR, Morales Ramos V. 2019. Cup quality attributes of Catimors as affected by size and shape of coffee bean (Coffea arabica L.). International Journal of Food Properties 22:758−67

doi: 10.1080/10942912.2019.1603997
[23]

Angkasith P, Warit B. 1999. Highland arabica coffee production. Faculty of Agriculture, Chiang Mai University. pp 38−54

[24]

Sera GH, Sera T, Fonseca ICdB, Ito DS. 2010. Resistance to leaf rust in coffee cultivars. Coffee science 5:59−66

[25]

Techanan A, Rumjuankiat K, Boonmee K, Chumpun C, Panchan I, et al. 2023. Genetic diversity of arabica coffee varieties from the Royal project foundation using genotyping-by-sequencing (GBS). International Journal of Agricultural Technology 19:257−76

[26]

Noppakoonwong U, Khomarwut C, Hanthewee M, Jarintorn S, Hassarungsee S, et al. Research and development of Arabica coffee in Thailand. Proceedings of the 25th International Conference on Coffee Science (ASIC), Armenia, Colombia, 2014. pp. 42−49

[27]

Montagnon C, Mahyoub A, Solano W, Sheibani F. 2021. Unveiling a unique genetic diversity of cultivated Coffea arabica L. in its main domestication center: Yemen. Genetic Resources and Crop Evolution 68:2411−22

doi: 10.1007/s10722-021-01139-y
[28]

Horwitz W, Albert R. 1996. Reliability of the determinations of polychlorinated contaminants (biphenyls, dioxins, furans). Journal of AOAC International 79:589−621

doi: 10.1093/jaoac/79.3.589
[29]

Puraikalan Y. 2018. Characterization of proximate, phytochemical and antioxidant analysis of banana (Musa sapientum) peels/skins and objective evaluation of ready to eat/cook product made with banana peels. Current Research in Nutrition and Food Science Journal 6:382−91

doi: 10.12944/CRNFSJ.6.2.13
[30]

Suksathan R, Rachkeeree A, Puangpradab R, Kantadoung K, Sommano SR. 2021. Phytochemical and nutritional compositions and antioxidants properties of wild edible flowers as sources of new tea formulations. NFS Journal 24:15−25

doi: 10.1016/j.nfs.2021.06.001
[31]

Elias F, Muleta D, Woyessa D. 2016. Effects of phosphate solubilizing fungi on growth and yield of haricot bean (Phaseolus vulgaris L.) plants. Journal of Agricultural Science 8:204−18

doi: 10.5539/jas.v8n10p204
[32]

Sommano SR, Suppakittpaisarn P, Suksathan R, Wongnak M, Panyadee P, et al. 2025. Wild edible flowers as a promising source of protein and essential nutrients for food security of the Mekong region. Discover Food 5:188

doi: 10.1007/s44187-025-00457-9
[33]

Dos Santos ÉM, de Macedo LM, Ataide JA, Delafiori J, de Oliveira Guarnieri JP, et al. 2024. Antioxidant, antimicrobial and healing properties of an extract from coffee pulp for the development of a phytocosmetic. Scientific Reports 14:4453

doi: 10.1038/s41598-024-54797-0
[34]

Nemzer B, Kalita D, Abshiru N. 2021. Quantification of major bioactive constituents, antioxidant activity, and enzyme inhibitory effects of whole coffee cherries (Coffea arabica) and their extracts. Molecules 26:4306

doi: 10.3390/molecules26144306
[35]

Sunanta P, Sommano SR, Luiten CA, Ghofrani M, Sims IM, et al. 2024. Fractionation and characterisation of pectin-rich extracts from garlic biomass. Food Chemistry 436:137697

doi: 10.1016/j.foodchem.2023.137697
[36]

Srikamwang C, Willats WGT, Bakshani CR, Sommano SR, Wongkaew M. 2024. Potentials of Mahachanok mango peel pectin in modulating glycaemic index in simulated in vitro carbohydrate digestion of meat product. Journal of Agriculture and Food Research 18:101304

doi: 10.1016/j.jafr.2024.101304
[37]

Garnier L, Valence F, Pawtowski A, Auhustsinava-Galerne L, Frotté N, et al. 2017. Diversity of spoilage fungi associated with various French dairy products. International Journal of Food Microbiology 241:191−97

doi: 10.1016/j.ijfoodmicro.2016.10.026
[38]

Gemechu FG. 2020. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends in Food Science & Technology 104:235−61

doi: 10.1016/j.jpgs.2020.08.005
[39]

Hendroko Setyobudi R, Krido Wahono S, Gamawati Adinurani P, Wahyudi A, Widodo W, et al. 2018. Characterisation of arabica coffee pulp - hay from Kintamani - Bali as prospective biogas feedstocks. MATEC Web of Conferences 164:01039

doi: 10.1051/matecconf/201816401039
[40]

Moreno J, Cozzano S, Pérez AM, Arcia P, Curutchet A. 2019. Coffee pulp waste as a functional ingredient: effect on salty cookies quality. Journal of Food and Nutrition Research 7:632−38

doi: 10.12691/jfnr-7-9-2
[41]

Murthy PS, Naidu MM. 2012. Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food and Bioprocess Technology 5:897−903

doi: 10.1007/s11947-010-0363-z
[42]

Khairunnisa R, Yulia E, Atmanto D. 2025. Pengaruh pengetahuan kesehatan kulit wajah terhadap perilaku pemakaian facial wash pada remaja putri di SMP Negeri 138 Jakarta. Innovative: Journal Of Social Science Research 5:5564−77

doi: 10.31004/innovative.v5i4.20526
[43]

Panda D, Singh BR, Nanda M. 2024. Diversity of nutritional compositions in selected coffee varieties from Koraput regions of Eastern Ghats. Vegetos

doi: 10.1007/s42535-024-01047-3
[44]

Costa ASG, Peixoto JAB, Machado S, Espírito Santo L, Soares TF, et al. 2025. Coffee pulp from azores: a novel phytochemical-rich food with potential anti-diabetic properties. Foods 14:306

doi: 10.3390/foods14020306
[45]

Abduh MY, Merari G, Angkasa MD, Pangastuti WIR, Rahmawati A, et al. 2025. Effects of fermentations using Aspergillus spp. towards extraction yield and bioactivity of coffee pulp extract. Biomass Conversion and Biorefinery 15:15087−99

doi: 10.1007/s13399-024-06274-x
[46]

Brummell DA. 2006. Cell wall disassembly in ripening fruit. Functional Plant Biology 33:103−19

doi: 10.1071/FP05234
[47]

Rohaya S, Anwar SH, Amhar AB, Sutriana A, Muzaifa M. 2023. Antioxidant activity and physicochemical composition of coffee pulp obtained from three coffee varieties in Aceh, Indonesia. IOP Conference Series: Earth and Environmental Science 1182:012063

doi: 10.1088/1755-1315/1182/1/012063
[48]

Malarat S, Khongpun D, Limtong K, Sinthuwong N, Soontornapaluk P, et al. 2023. Preparation of nanocellulose from coffee pulp and its potential as a polymer reinforcement. ACS Omega 8:25122−33

doi: 10.1021/acsomega.3c02016
[49]

Romauli NDM, Siahaan FTK, Sagala M, Sihombing HV, Ambarita H, et al. 2023. Comparative investigation on the nutritional value of fresh coffee pulp, cascara powder, and cascara sap from arabica, robusta, and liberica coffee. IOP Conference Series: Earth and Environmental Science 1230:012153

doi: 10.1088/1755-1315/1230/1/012153
[50]

Khan N, Ruqia B, Hussain J, Jamila N, Rehman N, et al. 2013. Nutritional assessment and proximate analysis of selected vegetables from parachinar kurram agency. American Journal of Research Communication 1:184−98

[51]

Vladimir-Knežević S, Blažeković B, Bival Štefan M, Babac M. 2012. Plant polyphenols as antioxidants influencing the human health. In Phytochemicals as Nutraceuticals - Global Approaches to Their Role in Nutrition and Health, ed. Rao V. UK: IntechOpen doi: 10.5772/27843

[52]

Janissen B, Huynh T. 2018. Chemical composition and value-adding applications of coffee industry by-products: a review. Resources, Conservation and Recycling 128:110−17

doi: 10.1016/j.resconrec.2017.10.001
[53]

Kaisangsri N, Selamassakul O, Sonklin C, Laohakunjit N, Kerdchoechuen O, et al. 2019. Phenolic compounds and biological activities of coffee extract for cosmetic product. SEATUC Journal of Science and Engineering 1:71−76

[54]

Solomakou N, Loukri A, Tsafrakidou P, Michaelidou AM, Mourtzinos I, et al. 2022. Recovery of phenolic compounds from spent coffee grounds through optimized extraction processes. Sustainable Chemistry and Pharmacy 25:100592

doi: 10.1016/j.scp.2021.100592
[55]

das Neves JVG, Borges MV, de Melo Silva D, dos Santos Leite CX, Santos MRC, et al. 2019. Total phenolic content and primary antioxidant capacity of aqueous extracts of coffee husk: chemical evaluation and beverage development. Food Science and Technology 39:348−53

doi: 10.1590/fst.36018
[56]

Halliwell B, Murcia MA, Chirico S, Aruoma OI. 1995. Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science and Nutrition 35:7−20

doi: 10.1080/10408399509527682
[57]

Sultana B, Anwar F. 2008. Flavonols (kaempeferol, quercetin, myricetin) contents of selected fruits, vegetables and medicinal plants. Food Chemistry 108:879−84

doi: 10.1016/j.foodchem.2007.11.053
[58]

Tosun M, Ercisli S, Sengul M, Ozer H, Polat T, et al. 2009. Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biological Research 42:175−81

doi: 10.4067/S0716-97602009000200005
[59]

Muanda F, Koné D, Dicko A, Soulimani R, Younos C. 2011. Phytochemical composition and antioxidant capacity of three Malian medicinal plant parts. Evidence‐Based Complementary and Alternative Medicine 2011:674320

doi: 10.1093/ecam/nep109
[60]

Hu S, Gil-Ramírez A, Martín-Trueba M, Benítez V, Aguilera Y, et al. 2023. Valorization of coffee pulp as bioactive food ingredient by sustainable extraction methodologies. Current Research in Food Science 6:100475

doi: 10.1016/j.crfs.2023.100475
[61]

Heaney RP. 2015. Sodium, potassium, phosphorus, and magnesium. In Nutrition and Bone Health, eds Holick MF, Nieves JW. New York, NY: Humana Press. pp. 379–93 doi: 10.1007/978-1-4939-2001-3_24

[62]

Manasa V, Padmanabhan A, Anu Appaiah KA. 2021. Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Management 120:762−71

doi: 10.1016/j.wasman.2020.10.045
[63]

Pattarapisitporn A, Noma S. 2025. Alternative solvents for pectin extraction: effects of extraction agents on pectin structural characteristics and functional properties. Foods 14:2644

doi: 10.3390/foods14152644
[64]

Naveena KR, Yankanchi GM, Geetha K, Yatnatti S. 2021. Physico-chemical properties of pectin extracted from mango peel. The Pharma Innovation Journal 10:2867−71

[65]

Jiang Y, Du Y, Zhu X, Xiong H, Woo MW, et al. 2012. Physicochemical and comparative properties of pectins extracted from Akebia trifoliata var. australis peel. Carbohydrate Polymers 87:1663−69

doi: 10.1016/j.carbpol.2011.09.064
[66]

Wang F, Du C, Chen J, Shi L, Li H. 2021. A new method for determination of pectin content using spectrophotometry. Polymers 13:2847

doi: 10.3390/polym13172847
[67]

Zhang X, Li T, He A, Yang L, Noda I, et al. 2023. Comprehensive modified approaches to reducing the interference of moisture from an FTIR spectrum and the corresponding second derivative spectrum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 287:122004

doi: 10.1016/j.saa.2022.122004
[68]

Güzel M, Akpınar Ö. 2019. Valorisation of fruit by-products: production characterization of pectins from fruit peels. Food and Bioproducts Processing 115:126−33

doi: 10.1016/j.fbp.2019.03.009
[69]

Vellaisamy Singaram AJ, Guruchandran S, Bakshi A, Muninathan C, Ganesan ND. 2021. Study on enhanced mechanical, barrier and optical properties of chemically modified mango kernel starch films. Packaging Technology and Science 34:485−95

doi: 10.1002/pts.2574
[70]

Liu S, Willett WC, Manson JE, Hu FB, Rosner B, et al. 2003. Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. The American Journal of Clinical Nutrition 78:920−27

doi: 10.1093/ajcn/78.5.920
[71]

Lefsih K, Giacomazza D, Dahmoune F, Mangione MR, Bulone D, et al. 2017. Pectin from Opuntia ficus indica: optimization of microwave-assisted extraction and preliminary characterization. Food Chemistry 221:91−99

doi: 10.1016/j.foodchem.2016.10.073
[72]

Rodsamran P, Sothornvit R. 2019. Microwave heating extraction of pectin from lime peel: characterization and properties compared with the conventional heating method. Food Chemistry 278:364−72

doi: 10.1016/j.foodchem.2018.11.067
[73]

Szymanska-Chargot M, Zdunek A. 2013. Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food Biophysics 8:29−42

doi: 10.1007/s11483-012-9279-7
[74]

Černá M, Barros AS, Nunes A, Rocha SM, Delgadillo I, et al. 2003. Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydrate Polymers 51:383−89

doi: 10.1016/S0144-8617(02)00259-X
[75]

Gawkowska D, Cybulska J, Zdunek A. 2018. Structure-related gelling of pectins and linking with other natural compounds: a review. Polymers 10:762

doi: 10.3390/polym10070762
[76]

Chen J, Liu W, Liu CM, Li T, Liang RH, et al. 2015. Pectin modifications: a review. Critical Reviews in Food Science and Nutrition 55:1684−98

doi: 10.1080/10408398.2012.718722
[77]

Trejo-Téllez LI, Gómez-Merino FC. 2014. Nutrient management in strawberry. Effects on yield, quality and plant health. In Strawberries: Cultivation, Antioxidant Properties and Health Benefits, ed. Malone N. US: Nova Science Publishers, Inc. pp. 239−67

[78]

EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, et al. 2017. Re-evaluation of pectin (E 440i) and amidated pectin (E 440ii) as food additives. EFSA Journal 15:e04866

doi: 10.2903/j.efsa.2017.4866
[79]

Yang L, Wen KS, Ruan X, Zhao YX, Wei F, et al. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23:762

doi: 10.3390/molecules23040762