| [1] |
Veretennikova N, Kislov V, Eremenko K. 2021. The problem of timely detection and elimination of forest fires. |
| [2] |
Burgan RE, Rothermel RG. 1984. BEHAVE: fire behavior prediction and fuel modeling system. FUEL subsystem. General Technical Report INT-167, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden, UT, USA. pp. 126 www.fs.usda.gov/rm/pubs_int/int_gtr167.pdf |
| [3] |
Forestry Canada. 1992. Development and structure of the Canadian Forest Fire Behavior Prediction System. Information Report ST-X-3, Forestry Canada, Fire Danger Group. Science and Sustainable Development Directorate, Ottawa, Canada. pp. 63 https://openlibrary.org/books/OL1491945M/Development_and_structure_of_the_Canadian_forest_fire_behavior_prediction_system |
| [4] |
Keane RE. 2015. Wildland Fuel Fundamentals and Applications. Cham, Switzerland: Springer International Publishing https://wifri.org/wp-content/uploads/2021/02/116455.pdf |
| [5] |
Aragoneses E, García M, Salis M, Ribeiro LM, Chuvieco E. 2023. Classification and mapping of European fuels using a hierarchical, multipurpose fuel classification system. |
| [6] |
Bartalev SA, Ershov DV, Korovin GN, Kotelnikov RV, Lupyan EA, et al. 2008. Information system for remote monitoring of forest fires Federal Forestry Agency of the Russian Federation (status and development prospects). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Modern Problems of Remote Sensing of the Earth from Space] 2(5):419−29 (in Russian) |
| [7] |
Cruz MG, Gould JS, Hollis JJ, McCaw WL. 2018. A hierarchical classification of wildland fire fuels for Australian vegetation types. |
| [8] |
Johnston LM, Flannigan MD. 2017. Mapping Canadian wildland fire interface areas. |
| [9] |
Reeves MC, Ryan KC, Rollins MG, Thompson TG. 2009. Spatial fuel data products of the LANDFIRE project. |
| [10] |
De Groot WJ. 1993. Examples of fuel types in the Canadian Forest Fire Behavior Prediction (FBP) System. Report. Forestry Canada, Northern Forestry Centre, Edmonton, Alberta, Canada. pp. 16 https://ostrnrcan-dostrncan.canada.ca/handle/1845/234327 |
| [11] |
Kurbatsky NP. 1962. Tekhnika i taktika tusheniya lesnykh pozharov [Technique and tactics of suppressing forest fires]. Moscow, Russia: Goslesbumizdat. pp. 154 (in Russian) https://cat.gpntb.ru/index.php?id=EC/ShowFull&bid=f279c632cdcc2880b737fdf42aaba2ff&irbDb=ESVODT |
| [12] |
Kurbatsky NP. 1970. Study of the quantity and properties of forest fuels. In Voprosy lesnoy pirologii [Issues of Forest Fire Science]. Krasnoyarsk, Russia: ILiD SB of the USSR Academy of Sciences. pp. 5–58 https://search.rsl.ru/ru/record/01007312274 |
| [13] |
Andrews P, Bevins C, Seli R. 2005. BehavePlus fire modeling system, version 4.0: user's guide. General Technical Report RMRS-GTR-106 Revised, Department of Agriculture, Forest Service, Rocky Mountain Research Station, Ogden, UT, USA. pp. 132 www.fs.usda.gov/rm/pubsrmrs_/gtr106.pdf |
| [14] |
Kurbatsky NP. 1954. Metodicheskie ukazania dlya opytnoi razrabotki mestnykh shkal pozharnoi opasnosti [Methodical guidelines for experimental development of local fire danger scales]. Leningrad: Central Research Institute of Forestry. pp. 33 https://search.rsl.ru/ru/record/01005823885 |
| [15] |
Volokitina AV, Sofronov MA. 2002. Klassifikatsiya i kartografirovanie rastitelnykh goryuchikh materialov [Vegetation fuel classification and mapping]. Novosibirsk, Russia: Izd. SO RAN. pp. 314 (in Russian) https://search.rsl.ru/ru/record/01001851653 |
| [16] |
Wright JG. 1967. Forest-fire hazard research. Information Report FF-X-5. Forest fire hazard paper No. 2. Petawawa Forest Experiment station Government of Canada, Department of Forestry and Rural Development, Forest Fire Research Institute, Ottawa, Ontario, Canada. pp. 72 |
| [17] |
Nesterov VG, Gritsenko MV, Shabunina TA. 1968. Using dew point temperature for calculation of the forest fire occurrence index. Meteorologia and Hidrologia 9:102−5 |
| [18] |
Volokitina AV. 2023. Development of an identifier of primary fire carriers. Lesnoi zhurnal [Forest Journal] 6:50−62 (in Russian) |
| [19] |
Keane RE, Reeves M. 2011. Use of expert knowledge to develop fuel maps for wildland fire management. In Expert Knowledge and Its Application in Landscape Ecology, eds. Ajith HP, C. Ashton D, Chris JJ. New York: Springer. pp. 211–28 www.fs.usda.gov/rm/pubs_other/rmrs_2012_keane_r001.pdf |
| [20] |
Abdollahi A, Yebra M. 2023. Forest fuel type classification: review of remote sensing techniques, constraints and future trends. |
| [21] |
Duff TJ, Keane RE, Penman TD, Tolhurst KG. 2017. Revisiting wildland fire fuel quantification methods: the challenge of understanding a dynamic, biotic entity. |
| [22] |
Sofronov MA. 1964. Effect of relief on forest fire in Western Sayan. In Soviet Progress in Forest Fire Control. ed. Kurbatskii NP. New York: Springer. pp. 13–21 https://nap.nationalacademies.org/read/27047/chapter/54 |
| [23] |
Volokitina AV, Sofronova TM, Korets MA. 2022. Methods of creating information databases for vegetation fire behavior prediction. |
| [24] |
Voynov GS, Sofronov MA. 1976. Prediction of tree mortality in a forest stand after surface fires. In Sovremennye issledovaniya tipologii i pirologii lesa [Contemporary studies of forest typology and pyrology]. Archangelsk: AILiLkh. pp. 115–21 https://rusneb.ru/catalog/000199_000009_007005881 |
| [25] |
Volokitina AV. 1996. Forest fuel maps. In Fire in Ecosystems of Boreal Eurasia, eds.Goldammer JG, Furyaev VV. Dordrecht: Springer. pp. 239–52 doi: 10.1007/978-94-015-8737-2_19 |