[1]

Directorate General of Estates, Ministry of Agriculture. 2023. Statistics of estate crops 2022-2024. https://ditjenbun.pertanian.go.id/buku-statistik-perkebunan-jilid-i-2022-2024/

[2]

BPS-Statistics Indonesia. 2023. Indonesian cocoa statistics 2022. Vol. 7. 73 pp. www.bps.go.id/en/publication/2023/11/30/ef4419ba62e6ec7d4490218e/statistik-kakao-indonesia-2022.html

[3]

Ploetz R. 2016. The impact of diseases on cacao production: a global overview. In Cacao Diseases, eds Bailey B, Meinhardt L. Cham: Springer International Publishing. pp. 33−59 doi: 10.1007/978-3-319-24789-2_2

[4]

Marelli JP, Guest DI, Bailey BA, Evans HC, Brown JK, et al. 2019. Chocolate under threat from old and new cacao diseases. Phytopathology 109(8):1331−43

doi: 10.1094/PHYTO-12-18-0477-RVW
[5]

Delgado-Ospina J, Molina-Hernández JB, Chaves-López C, Romanazzi G, Paparella A. 2021. The role of fungi in the cocoa production chain and the challenge of climate change. Journal of Fungi 7(3):202

doi: 10.3390/jof7030202
[6]

Delgado C, Couturier G. 2017. Primer registro de Xylosandrus compactus (Coleoptera: Curculionidae: scolytinae) sobre cacao en perú. Revista Colombiana de Entomología 43:121

doi: 10.25100/socolen.v43i1.6659
[7]

Asman A, Rosmana A, bin Purung MH, Amiruddin A, Amin N, et al. 2021. The occurrence of Xylosandrus compactus and its associated fungi on cacao from South Sulawesi, Indonesia: a preliminary study of an emerging threat to the cacao industry. Journal of Plant Diseases and Protection 128:303−09

doi: 10.1007/s41348-020-00387-x
[8]

Waller JM, Bigger M, Hillocks RJ. 2007. Coffee pests, diseases and their management. Wallingford: CABI Publishing. pp. 1−434 doi: 10.1079/9781845931292.0000

[9]

Hulcr J, Dunn RR. 2011. The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proceedings Biological Sciences 278:2866−73

doi: 10.1098/rspb.2011.1130
[10]

Haack RA, Rabaglia RJ. 2013. Exotic bark and Ambrosia beetles in the USA: potential and current invaders. In Potential Invasive Pests of Agricultural Crops, ed. Peña JE. Wallingford: CABI. pp. 48−74 doi: 10.1079/9781845938291.0048

[11]

Vannini A, Contarini M, Faccoli M, Dalla Valle M, Rodriguez CM, et al. 2017. First report of the Ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations. EPPO Bulletin 47:100−03

doi: 10.1111/epp.12358
[12]

Musvuugwa T, Wilhelm de Beer Z, Duong TA, Dreyer LL, Oberlander KC, et al. 2015. New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea. Antonie Van Leeuwenhoek 108(4):933−50

doi: 10.1007/s10482-015-0547-7
[13]

Hara AH, Beardsley JW Jr. 1979. Biology of the black twig Borer, Xylosandrus compactus (Eichhof), in Hawaii. Proceedings of the Hawaiian Entomological Society 23(1):55−70

[14]

Batra LR. 1966. Ambrosia fungi: extent of specificity to Ambrosia beetles. Science 153:193−95

doi: 10.1126/science.153.3732.193
[15]

Klepzig KD, Six DL. 2004. Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189−205

[16]

Paine TD, Raffa KF, Harrington TC. 1997. Interactions among Scolytid bark beetles, their associated fungi, and live host conifers. Annual Review of Entomology 42:179−206

doi: 10.1146/annurev.ento.42.1.179
[17]

Bailey BA, Strem MD, Bae H, de Mayolo GA, Guiltinan MJ. 2005. Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate. Plant Science 168:1247−58

doi: 10.1016/j.plantsci.2005.01.002
[18]

Shaner G, Finney RE. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051−56

doi: 10.1094/phyto-67-1051
[19]

Susilo WA. 2013. Peran petani dalam pengembangan Klon-Klon Lokal di Sulawesi. In Warta Pusat Penelitian Kopi dan Kakao Indonesia. Jember, Indonesia: Pusat Penelitian Kopi dan Kakao Indonesia (Indonesian Coffee and Cocoa Research Institute (ICCRI)). Vol. 25. pp. 1−6 https://warta.iccri.net/wp-content/uploads/2023/06/1.-Agung-Wahyu-Susilo-Peran-Petani-dalam-Pengembangan-Klon-Klon-Lokal-di-Sulawesi.pdf

[20]

Kementerian Pertanian. 2017. Keputusan Menteri Pertanian No. 25/Kpts/KB. 020/5/2017 Tentang Pedoman Produksi, Sertifikasi, Peredaran dan Pengawasan Benih Tanaman Kakao. Decisions and Regulations of the Minister of Agriculture, Indonesia: Directorate General of Plantations. https://ditjenbun.pertanian.go.id/regulasi/peraturan-menteri-pertanian/

[21]

Asman A, Iwanami T, Rosmana A, Amin N. 2024. Assessing the response of local cocoa clones of south Sulawesi for resistance to dieback disease caused by Lasiodiplodia theobromae. Journal of Phytopathology 172:e13424

doi: 10.1111/jph.13424
[22]

Ali Khanzada M, Lodhi AM, Shahzad S. 2004. Mango dieback and gummosis in Sindh, Pakistan caused by Lasiodiplodia theobromae. Plant Health Progress 5:13

doi: 10.1094/php-2004-0302-01-dg
[23]

Ko WH, Wang IT, Ann PJ. 2004. Lasiodiplodia theobromae as a causal agent of kumquat dieback in Taiwan. Plant Disease 88(12):1383

doi: 10.1094/PDIS.2004.88.12.1383A
[24]

Ismail AM, Cirvilleri G, Polizzi G, Crous PW, Groenewald JZ, et al. 2012. Lasiodiplodia species associated with dieback disease of mango (Mangifera indica) in Egypt. Australasian Plant Pathology 41:649−60

doi: 10.1007/s13313-012-0163-1
[25]

Adu-Acheampong R, Archer S, Leather S. 2012. Resistance to dieback disease caused by FUSARIUM and LASIODIPLODIA species in cacao (THEOBROMA CACAO l.) genotypes. Experimental Agriculture 48:85−98

doi: 10.1017/s0014479711000883
[26]

Borges RCF, Santos MDM, Macedo MA, Martins I, Nascimento AG, et al. 2015. A trunk canker disease of Tectona grandis induced by Lasiodiplodia theobromae in Brazil. New Disease Reports 31:26

doi: 10.5197/j.2044-0588.2015.031.026
[27]

Nam MH, Park MS, Kim HS, Kim TI, Lee EM, et al. 2016. First report of dieback caused by Lasiodiplodia theobromae in strawberry plants in Korea. Mycobiology 44:319−24

doi: 10.5941/MYCO.2016.44.4.319
[28]

Serrato-Diaz LM, Mariño YA, Guadalupe I, Bayman P, Goenaga R. 2020. First report of Lasiodiplodia pseudotheobromae and Colletotrichum siamense causing cacao pod rot, and first report of C. tropicale causing cacao pod rot in Puerto Rico. Plant Disease 104:592

doi: 10.1094/pdis-06-19-1333-pdn
[29]

Chen J, Zhu Z, Fu Y, Cheng J, Xie J, et al. 2021. Identification of Lasiodiplodia pseudotheobromae causing fruit rot of Citrus in China. Plants 10:202

doi: 10.3390/plants10020202
[30]

Puig AS, Keith LM, Matsumoto TK, Gutierrez OA, Marelli JP. 2021. Virulence tests of Neofusicoccum parvum, Lasiodiplodia theobromae, and Phytophthora palmivora on Theobroma cacao. European Journal of Plant Pathology 159:851−62

doi: 10.1007/s10658-021-02210-1
[31]

Asman A, Rosmana A, Bailey BA, Ali SS, Iwanami T, et al. 2024. Pathogenicity of Lasiodiplodia theobromae isolated from cocoa dieback disease in South Sulawesi, Indonesia. Journal of Phytopathology 172:e13352

doi: 10.1111/jph.13352
[32]

Hulcr J, Stelinski LL. 2017. The Ambrosia symbiosis: from evolutionary ecology to practical management. Annual Review of Entomology 62:285−303

doi: 10.1146/annurev-ento-031616-035105
[33]

Gugliuzzo A, Criscione G, Biondi A, Aiello D, Vitale A, et al. 2020. Seasonal changes in population structure of the Ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. PLoS One 15:e0239011

doi: 10.1371/journal.pone.0239011
[34]

Morales-Rodríguez C, Sferrazza I, Aleandri MP, Dalla Valle M, Speranza S, et al. 2021. The fungal community associated with the Ambrosia beetle Xylosandrus compactus invading the Mediterranean maquis in central Italy reveals high biodiversity and suggests environmental acquisitions. Fungal Biology 125:12−24

doi: 10.1016/j.funbio.2020.09.008
[35]

Kasson MT, O'Donnell K, Rooney AP, Sink S, Ploetz RC, et al. 2013. An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by Ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genetics and Biology 56:147−57

doi: 10.1016/j.fgb.2013.04.004
[36]

Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, et al. 2015. The Ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. The ISME Journal 9:126−38

doi: 10.1038/ismej.2014.115
[37]

Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, et al. 2005. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches' Broom Disease. International Journal of Biological Sciences 1:24−33

doi: 10.7150/ijbs.1.24
[38]

Rosmana A, Hikmawati H, Asman A. 2014. Identification of a disease on cocoa caused by Fusarium in Sulawesi. Pelita Perkebunan 29:210−19

doi: 10.22302/iccri.jur.pelitaperkebunan.v29i3.13
[39]

Amin N, Salam M, Junaid M, Asman, Baco MS. 2014. Isolation and identification of endophytic fungi from cocoa plant resistance VSD M0.5 and cocoa plant susceptible VSD M0.1 in South Sulawesi, Indonesia. International Journal of Current Microbiology and Applied Sciences 3(2):459−67

[40]

Asman A, Amin N, Rosmana A, Abdullah T. 2018. Endophytic fungi associated with cacao branch and their potential for biocontrol vascular streak dieback disease on cacao seedling. IOP Conference Series: Earth and Environmental Science 157:012039

doi: 10.1088/1755-1315/157/1/012039
[41]

Rosmana A, Papalangi IP, Kannapadang S, Rahim MD, Asman, et al. 2014. Cultural and pathogenic characterization of Fusarium fungi isolated from dieback branches of cocoa. International Journal of Current Research and Academic Review 2:1−6

[42]

Rajput KS, Rao KS. 2007. Death and decay in the trees of Mango (Mangifera indica L.). Microbiological Research 162:229−37

doi: 10.1016/j.micres.2004.07.003
[43]

Masood A, Saeed S, Silveira SF, Akem CN, Hussain N, et al. 2011. Mango quick decline in Pakistan: survey and pathogenicity of fungi isolated from bark beetle and mango tree. Pakistan Journal of Botany 43:1793−98

[44]

Alvidrez-Villarreal R, Hernández-Castillo FD, Garcia-Martínez O, Mendoza-Villarreal R, Rodríguez-Herrera R, et al. 2012. Isolation and pathogenicity of fungi associated to Ambrosia borer (Euplatypus segnis) found injuring pecan (Carya illinoensis) wood. Agricultural Sciences 3(3):405−16

doi: 10.4236/as.2012.33048
[45]

CABI. 2021. Xylosandrus crassiusculus (Asian ambrosia beetle). Wallingford: CABI Compendium doi: 10.1079/cabicompendium.57235

[46]

Mbenoun M, Momo Zeutsa EH, Samuels G, Nsouga Amougou F, Nyasse S. 2008. Dieback due to Lasiodiplodia theobromae, a new constraint to cocoa production in Cameroon. Plant Pathology 57:381

doi: 10.1111/j.1365-3059.2007.01755.x
[47]

Kannan C, Karthik M, Priya K. 2010. Lasiodiplodia theobromae causes a damaging dieback of cocoa in India. Plant Pathology 59:410

doi: 10.1111/j.1365-3059.2009.02192.x
[48]

Alvindia DG, Gallema FLM. 2017. Lasiodiplodia theobromae causes vascular streak dieback (VSD)–like symptoms of cacao in Davao Region, Philippines. Australasian Plant Disease Notes 12:54

doi: 10.1007/s13314-017-0279-9
[49]

Ali SS, Asman A, Shao J, Balidion JF, Strem MD, et al. 2020. Genome and transcriptome analysis of the latent pathogen Lasiodiplodia theobromae, an emerging threat to the cacao industry. Genome 63:37−52

doi: 10.1139/gen-2019-0112
[50]

Asman A, Rosmana A, Bailey BA, Shahin AS, Stream MD, et al. 2020. Lasiodiplodia theobromae: an emerging threat to cocoa causes dieback and canker disease in Sulawesi. In Increasing the resilience of cacao to major pest and disease threats in the 21st century, ACIAR Proceedings Series, No. 149, eds. Niogret J, Sanchez V, Marelli JP. Australian Centre for International Agricultural Research, Canberra. pp. 80−74 www.aciar.gov.au/sites/default/files/2020-08/pr149-cocoa-ipm.pdf

[51]

Rosmana A, Sjam S, Dewi VS, Asman A, Fhiqrah M. 2022. Root and collar rot disease: a new threat to young cacao (Theobroma cacao L.) plants in Sulawesi, Indonesia. Australasian Plant Pathology 51:475−82

doi: 10.1007/s13313-022-00878-5
[52]

Mullen JM, Gilliam CH, Hagan AK, Morgan-Jones G. 1991. Canker of dogwood caused byLasiodiplodia theobromae, a disease influenced by drought stress or cultivar selection. Plant Disease 75:886−89

doi: 10.1094/pd-75-0886
[53]

Smith H, Wingfield MJ, Coutinho TA, Crous PW. 1996. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. South African Journal of Botany 62:86−88

doi: 10.1016/S0254-6299(15)30596-2
[54]

Burgess T, Wingfield BD, Wingfield MJ. 2001. Comparison of genotypic diversity in native and introduced populations of Sphaeropsis sapinea isolated from Pinus radiata. Mycological Research 105:1331−39

doi: 10.1017/S0953756201005056
[55]

Flowers J, Hartman J, Vaillancourt L. 2003. Detection of latent Sphaeropsis sapinea infections in Austrian pine tissues using nested-polymerase chain reaction. Phytopathology 93:1471−77

doi: 10.1094/PHYTO.2003.93.12.1471
[56]

Bateman C, Šigut M, Skelton J, Smith KE, Hulcr J. 2016. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, scolytinae) are spatially segregated on the insect body. Environmental Entomology 45:883−90

doi: 10.1093/ee/nvw070
[57]

Nascimento AD, Lima MO, Feijó FM, Júnior JH, Sobrinho RR, et al. 2019. First report of Colletotrichum aeschynomenes causing anthracnose in cacao (Theobroma cacao) in Brazil. Plant Disease 103:3284

doi: 10.1094/pdis-11-18-2047-pdn
[58]

Huda-Shakirah AR, Mohd MH. 2023. Morphology, phylogeny, and pathogenicity of Colletotrichum siamense associated with leaf blight and pod rot of Theobroma cacao in Malaysia. Tropical Plant Pathology 48:319−31

doi: 10.1007/s40858-023-00561-0
[59]

Rassati D, Marini L, Malacrinò A. 2019. Acquisition of fungi from the environment modifies Ambrosia beetle mycobiome during invasion. PeerJ 7:e8103

doi: 10.7717/peerj.8103
[60]

Chang R, Duong TA, Taerum SJ, Wingfield MJ, Zhou X, et al. 2017. Ophiostomatoid fungi associated with conifer-infesting beetles and their phoretic mites in Yunnan, China. MycoKeys 21:19−64

doi: 10.3897/mycokeys.28.21758
[61]

Rondon A, Guevara Y. 1984. Algunos aspectos relacionados con la muerte regresiva del aguacate (Persea Americana Mill). Agronomia Tropical 34:119−29

[62]

Flores Velasteguí T, Cabezas Guerrero F, Crespo Gutiérrez R. 2010. Plagas y enfermedades en plantaciones de teca (Tectona grandis l.f) en la zona de balzar, provincia del Guayas. Ciencia y Tecnología 3:15−22

doi: 10.18779/cyt.v3i1.88
[63]

Pitt WM, Huang R, Steel CC, Savocchia S. 2013. Pathogenicity and epidemiology of Botryosphaeriaceae species isolated from grapevines in Australia. Australasian Plant Pathology 42:573−82

doi: 10.1007/s13313-013-0221-3
[64]

Roberts AJ, Punja ZK. 2022. Pathogenicity of seedborne Alternaria and Stemphylium species and stem-infecting Neofusicoccum and Lasiodiplodia species to Cannabis (Cannabis sativa L., marijuana) plants. Canadian Journal of Plant Pathology 44:250−69

doi: 10.1080/07060661.2021.1988712
[65]

Alamouti S, Tsui CKM, Breuil C. 2009. Multigene phylogeny of flamentous ambrosia fungi associated with ambrosia and bark beetles. Mycological Research 113(8):822−35

doi: 10.1016/j.mycres.2009.03.003
[66]

Aoki T, Smith JA, Kasson MT, Freeman S, Geiser DM, et al. 2019. Three novel Ambrosia Fusarium Clade species producing clavate macroconidia known (F. floridanum and F. obliquiseptatum) or predicted (F. tuaranense) to be farmed by Euwallacea spp. (Coleoptera: Scolytinae) on woody hosts. Mycologia 111(6):919−35

doi: 10.1080/00275514.2019.1647074
[67]

Gebhardt H, Weiss M, Oberwinkler F. 2005. Dryadomyces amasae: a nutritional fungus associated with Ambrosia beetles of the genus Amasa (Coleoptera: Curculionidae, scolytinae). Mycological Research 109:687−96

doi: 10.1017/S0953756205002777
[68]

Harrington TC. 2005. Ecology and evolution of mycophagous bark beetles and their fungal partners. In Insect-Fungal Associations Ecology and Evolution, eds Vega FE, Blackwell M. New York, NY: Oxford Academic. pp. 257−91 doi: 10.1093/oso/9780195166521.003.0011

[69]

Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, et al. 2016. Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov. —two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108(2):313−29

doi: 10.3852/15-063
[70]

Nkuekam GK, Wilhelm de Beer Z, Wingfield MJ, Mohammed C, Carnegie AJ, et al. 2011. Ophiostoma species (Ophiostomatales, Ascomycota), including two new taxa on eucalypts in Australia. Australian Journal of Botany 59(3):283

doi: 10.1071/bt10231
[71]

Webber JF. 1990. Relative effectiveness of Scolytus scolytus, S. multistriatus and S. kirschi as vectors of Dutch elm disease. European Journal of Forest Pathology 20(3):184−92

doi: 10.1111/j.1439-0329.1990.tb01129.x