| [1] |
Directorate General of Estates, Ministry of Agriculture. 2023. Statistics of estate crops 2022-2024. https://ditjenbun.pertanian.go.id/buku-statistik-perkebunan-jilid-i-2022-2024/ |
| [2] |
BPS-Statistics Indonesia. 2023. Indonesian cocoa statistics 2022. Vol. 7. 73 pp. www.bps.go.id/en/publication/2023/11/30/ef4419ba62e6ec7d4490218e/statistik-kakao-indonesia-2022.html |
| [3] |
Ploetz R. 2016. The impact of diseases on cacao production: a global overview. In Cacao Diseases, eds Bailey B, Meinhardt L. Cham: Springer International Publishing. pp. 33−59 doi: 10.1007/978-3-319-24789-2_2 |
| [4] |
Marelli JP, Guest DI, Bailey BA, Evans HC, Brown JK, et al. 2019. Chocolate under threat from old and new cacao diseases. |
| [5] |
Delgado-Ospina J, Molina-Hernández JB, Chaves-López C, Romanazzi G, Paparella A. 2021. The role of fungi in the cocoa production chain and the challenge of climate change. |
| [6] |
Delgado C, Couturier G. 2017. Primer registro de Xylosandrus compactus (Coleoptera: Curculionidae: scolytinae) sobre cacao en perú. |
| [7] |
Asman A, Rosmana A, bin Purung MH, Amiruddin A, Amin N, et al. 2021. The occurrence of Xylosandrus compactus and its associated fungi on cacao from South Sulawesi, Indonesia: a preliminary study of an emerging threat to the cacao industry. |
| [8] |
Waller JM, Bigger M, Hillocks RJ. 2007. Coffee pests, diseases and their management. Wallingford: CABI Publishing. pp. 1−434 doi: 10.1079/9781845931292.0000 |
| [9] |
Hulcr J, Dunn RR. 2011. The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. |
| [10] |
Haack RA, Rabaglia RJ. 2013. Exotic bark and Ambrosia beetles in the USA: potential and current invaders. In Potential Invasive Pests of Agricultural Crops, ed. Peña JE. Wallingford: CABI. pp. 48−74 doi: 10.1079/9781845938291.0048 |
| [11] |
Vannini A, Contarini M, Faccoli M, Dalla Valle M, Rodriguez CM, et al. 2017. First report of the Ambrosia beetle Xylosandrus compactus and associated fungi in the Mediterranean maquis in Italy, and new host–pest associations. |
| [12] |
Musvuugwa T, Wilhelm de Beer Z, Duong TA, Dreyer LL, Oberlander KC, et al. 2015. New species of Ophiostomatales from Scolytinae and Platypodinae beetles in the Cape Floristic Region, including the discovery of the sexual state of Raffaelea. |
| [13] |
Hara AH, Beardsley JW Jr. 1979. Biology of the black twig Borer, Xylosandrus compactus (Eichhof), in Hawaii. Proceedings of the Hawaiian Entomological Society 23(1):55−70 |
| [14] |
Batra LR. 1966. Ambrosia fungi: extent of specificity to Ambrosia beetles. |
| [15] |
Klepzig KD, Six DL. 2004. Bark beetle-fungal symbiosis: context dependency in complex associations. Symbiosis 37:189−205 |
| [16] |
Paine TD, Raffa KF, Harrington TC. 1997. Interactions among Scolytid bark beetles, their associated fungi, and live host conifers. |
| [17] |
Bailey BA, Strem MD, Bae H, de Mayolo GA, Guiltinan MJ. 2005. Gene expression in leaves of Theobroma cacao in response to mechanical wounding, ethylene, and/or methyl jasmonate. |
| [18] |
Shaner G, Finney RE. 1977. The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. |
| [19] |
Susilo WA. 2013. Peran petani dalam pengembangan Klon-Klon Lokal di Sulawesi. In Warta Pusat Penelitian Kopi dan Kakao Indonesia. Jember, Indonesia: Pusat Penelitian Kopi dan Kakao Indonesia (Indonesian Coffee and Cocoa Research Institute (ICCRI)). Vol. 25. pp. 1−6 https://warta.iccri.net/wp-content/uploads/2023/06/1.-Agung-Wahyu-Susilo-Peran-Petani-dalam-Pengembangan-Klon-Klon-Lokal-di-Sulawesi.pdf |
| [20] |
Kementerian Pertanian. 2017. Keputusan Menteri Pertanian No. 25/Kpts/KB. 020/5/2017 Tentang Pedoman Produksi, Sertifikasi, Peredaran dan Pengawasan Benih Tanaman Kakao. Decisions and Regulations of the Minister of Agriculture, Indonesia: Directorate General of Plantations. https://ditjenbun.pertanian.go.id/regulasi/peraturan-menteri-pertanian/ |
| [21] |
Asman A, Iwanami T, Rosmana A, Amin N. 2024. Assessing the response of local cocoa clones of south Sulawesi for resistance to dieback disease caused by Lasiodiplodia theobromae. |
| [22] |
Ali Khanzada M, Lodhi AM, Shahzad S. 2004. Mango dieback and gummosis in Sindh, Pakistan caused by Lasiodiplodia theobromae. |
| [23] |
Ko WH, Wang IT, Ann PJ. 2004. Lasiodiplodia theobromae as a causal agent of kumquat dieback in Taiwan. |
| [24] |
Ismail AM, Cirvilleri G, Polizzi G, Crous PW, Groenewald JZ, et al. 2012. Lasiodiplodia species associated with dieback disease of mango (Mangifera indica) in Egypt. |
| [25] |
Adu-Acheampong R, Archer S, Leather S. 2012. Resistance to dieback disease caused by FUSARIUM and LASIODIPLODIA species in cacao (THEOBROMA CACAO l.) genotypes. |
| [26] |
Borges RCF, Santos MDM, Macedo MA, Martins I, Nascimento AG, et al. 2015. A trunk canker disease of Tectona grandis induced by Lasiodiplodia theobromae in Brazil. |
| [27] |
Nam MH, Park MS, Kim HS, Kim TI, Lee EM, et al. 2016. First report of dieback caused by Lasiodiplodia theobromae in strawberry plants in Korea. |
| [28] |
Serrato-Diaz LM, Mariño YA, Guadalupe I, Bayman P, Goenaga R. 2020. First report of Lasiodiplodia pseudotheobromae and Colletotrichum siamense causing cacao pod rot, and first report of C. tropicale causing cacao pod rot in Puerto Rico. |
| [29] |
Chen J, Zhu Z, Fu Y, Cheng J, Xie J, et al. 2021. Identification of Lasiodiplodia pseudotheobromae causing fruit rot of Citrus in China. |
| [30] |
Puig AS, Keith LM, Matsumoto TK, Gutierrez OA, Marelli JP. 2021. Virulence tests of Neofusicoccum parvum, Lasiodiplodia theobromae, and Phytophthora palmivora on Theobroma cacao. |
| [31] |
Asman A, Rosmana A, Bailey BA, Ali SS, Iwanami T, et al. 2024. Pathogenicity of Lasiodiplodia theobromae isolated from cocoa dieback disease in South Sulawesi, Indonesia. |
| [32] |
Hulcr J, Stelinski LL. 2017. The Ambrosia symbiosis: from evolutionary ecology to practical management. |
| [33] |
Gugliuzzo A, Criscione G, Biondi A, Aiello D, Vitale A, et al. 2020. Seasonal changes in population structure of the Ambrosia beetle Xylosandrus compactus and its associated fungi in a southern Mediterranean environment. |
| [34] |
Morales-Rodríguez C, Sferrazza I, Aleandri MP, Dalla Valle M, Speranza S, et al. 2021. The fungal community associated with the Ambrosia beetle Xylosandrus compactus invading the Mediterranean maquis in central Italy reveals high biodiversity and suggests environmental acquisitions. |
| [35] |
Kasson MT, O'Donnell K, Rooney AP, Sink S, Ploetz RC, et al. 2013. An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by Ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. |
| [36] |
Kostovcik M, Bateman CC, Kolarik M, Stelinski LL, Jordal BH, et al. 2015. The Ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. |
| [37] |
Rubini MR, Silva-Ribeiro RT, Pomella AWV, Maki CS, Araújo WL, et al. 2005. Diversity of endophytic fungal community of cacao (Theobroma cacao L.) and biological control of Crinipellis perniciosa, causal agent of Witches' Broom Disease. |
| [38] |
Rosmana A, Hikmawati H, Asman A. 2014. Identification of a disease on cocoa caused by Fusarium in Sulawesi. |
| [39] |
Amin N, Salam M, Junaid M, Asman, Baco MS. 2014. Isolation and identification of endophytic fungi from cocoa plant resistance VSD M0.5 and cocoa plant susceptible VSD M0.1 in South Sulawesi, Indonesia. International Journal of Current Microbiology and Applied Sciences 3(2):459−67 |
| [40] |
Asman A, Amin N, Rosmana A, Abdullah T. 2018. Endophytic fungi associated with cacao branch and their potential for biocontrol vascular streak dieback disease on cacao seedling. |
| [41] |
Rosmana A, Papalangi IP, Kannapadang S, Rahim MD, Asman, et al. 2014. Cultural and pathogenic characterization of Fusarium fungi isolated from dieback branches of cocoa. International Journal of Current Research and Academic Review 2:1−6 |
| [42] |
Rajput KS, Rao KS. 2007. Death and decay in the trees of Mango (Mangifera indica L.). |
| [43] |
Masood A, Saeed S, Silveira SF, Akem CN, Hussain N, et al. 2011. Mango quick decline in Pakistan: survey and pathogenicity of fungi isolated from bark beetle and mango tree. Pakistan Journal of Botany 43:1793−98 |
| [44] |
Alvidrez-Villarreal R, Hernández-Castillo FD, Garcia-Martínez O, Mendoza-Villarreal R, Rodríguez-Herrera R, et al. 2012. Isolation and pathogenicity of fungi associated to Ambrosia borer (Euplatypus segnis) found injuring pecan (Carya illinoensis) wood. |
| [45] |
CABI. 2021. Xylosandrus crassiusculus (Asian ambrosia beetle). Wallingford: CABI Compendium doi: 10.1079/cabicompendium.57235 |
| [46] |
Mbenoun M, Momo Zeutsa EH, Samuels G, Nsouga Amougou F, Nyasse S. 2008. Dieback due to Lasiodiplodia theobromae, a new constraint to cocoa production in Cameroon. |
| [47] |
Kannan C, Karthik M, Priya K. 2010. Lasiodiplodia theobromae causes a damaging dieback of cocoa in India. |
| [48] |
Alvindia DG, Gallema FLM. 2017. Lasiodiplodia theobromae causes vascular streak dieback (VSD)–like symptoms of cacao in Davao Region, Philippines. |
| [49] |
Ali SS, Asman A, Shao J, Balidion JF, Strem MD, et al. 2020. Genome and transcriptome analysis of the latent pathogen Lasiodiplodia theobromae, an emerging threat to the cacao industry. |
| [50] |
Asman A, Rosmana A, Bailey BA, Shahin AS, Stream MD, et al. 2020. Lasiodiplodia theobromae: an emerging threat to cocoa causes dieback and canker disease in Sulawesi. In Increasing the resilience of cacao to major pest and disease threats in the 21st century, ACIAR Proceedings Series, No. 149, eds. Niogret J, Sanchez V, Marelli JP. Australian Centre for International Agricultural Research, Canberra. pp. 80−74 www.aciar.gov.au/sites/default/files/2020-08/pr149-cocoa-ipm.pdf |
| [51] |
Rosmana A, Sjam S, Dewi VS, Asman A, Fhiqrah M. 2022. Root and collar rot disease: a new threat to young cacao (Theobroma cacao L.) plants in Sulawesi, Indonesia. |
| [52] |
Mullen JM, Gilliam CH, Hagan AK, Morgan-Jones G. 1991. Canker of dogwood caused byLasiodiplodia theobromae, a disease influenced by drought stress or cultivar selection. |
| [53] |
Smith H, Wingfield MJ, Coutinho TA, Crous PW. 1996. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. and Eucalyptus spp. in South Africa. |
| [54] |
Burgess T, Wingfield BD, Wingfield MJ. 2001. Comparison of genotypic diversity in native and introduced populations of Sphaeropsis sapinea isolated from Pinus radiata. |
| [55] |
Flowers J, Hartman J, Vaillancourt L. 2003. Detection of latent Sphaeropsis sapinea infections in Austrian pine tissues using nested-polymerase chain reaction. |
| [56] |
Bateman C, Šigut M, Skelton J, Smith KE, Hulcr J. 2016. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, scolytinae) are spatially segregated on the insect body. |
| [57] |
Nascimento AD, Lima MO, Feijó FM, Júnior JH, Sobrinho RR, et al. 2019. First report of Colletotrichum aeschynomenes causing anthracnose in cacao (Theobroma cacao) in Brazil. |
| [58] |
Huda-Shakirah AR, Mohd MH. 2023. Morphology, phylogeny, and pathogenicity of Colletotrichum siamense associated with leaf blight and pod rot of Theobroma cacao in Malaysia. |
| [59] |
Rassati D, Marini L, Malacrinò A. 2019. Acquisition of fungi from the environment modifies Ambrosia beetle mycobiome during invasion. |
| [60] |
Chang R, Duong TA, Taerum SJ, Wingfield MJ, Zhou X, et al. 2017. Ophiostomatoid fungi associated with conifer-infesting beetles and their phoretic mites in Yunnan, China. |
| [61] |
Rondon A, Guevara Y. 1984. Algunos aspectos relacionados con la muerte regresiva del aguacate (Persea Americana Mill). Agronomia Tropical 34:119−29 |
| [62] |
Flores Velasteguí T, Cabezas Guerrero F, Crespo Gutiérrez R. 2010. Plagas y enfermedades en plantaciones de teca (Tectona grandis l.f) en la zona de balzar, provincia del Guayas. |
| [63] |
Pitt WM, Huang R, Steel CC, Savocchia S. 2013. Pathogenicity and epidemiology of Botryosphaeriaceae species isolated from grapevines in Australia. |
| [64] |
Roberts AJ, Punja ZK. 2022. Pathogenicity of seedborne Alternaria and Stemphylium species and stem-infecting Neofusicoccum and Lasiodiplodia species to Cannabis (Cannabis sativa L., marijuana) plants. |
| [65] |
Alamouti S, Tsui CKM, Breuil C. 2009. Multigene phylogeny of flamentous ambrosia fungi associated with ambrosia and bark beetles. |
| [66] |
Aoki T, Smith JA, Kasson MT, Freeman S, Geiser DM, et al. 2019. Three novel Ambrosia Fusarium Clade species producing clavate macroconidia known (F. floridanum and F. obliquiseptatum) or predicted (F. tuaranense) to be farmed by Euwallacea spp. (Coleoptera: Scolytinae) on woody hosts. |
| [67] |
Gebhardt H, Weiss M, Oberwinkler F. 2005. Dryadomyces amasae: a nutritional fungus associated with Ambrosia beetles of the genus Amasa (Coleoptera: Curculionidae, scolytinae). |
| [68] |
Harrington TC. 2005. Ecology and evolution of mycophagous bark beetles and their fungal partners. In Insect-Fungal Associations Ecology and Evolution, eds Vega FE, Blackwell M. New York, NY: Oxford Academic. pp. 257−91 doi: 10.1093/oso/9780195166521.003.0011 |
| [69] |
Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, et al. 2016. Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov. —two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. |
| [70] |
Nkuekam GK, Wilhelm de Beer Z, Wingfield MJ, Mohammed C, Carnegie AJ, et al. 2011. Ophiostoma species (Ophiostomatales, Ascomycota), including two new taxa on eucalypts in Australia. |
| [71] |
Webber JF. 1990. Relative effectiveness of Scolytus scolytus, S. multistriatus and S. kirschi as vectors of Dutch elm disease. |