[1]

Zhang J, Yao S, Pan L, Liu Y, Zhu C. 2023. A review of capacitive power transfer technology for electric vehicle applications. Electronics 12:3534

doi: 10.3390/electronics12163534
[2]

Kim D, Abu-Siada A, Sutinjo A. 2018. State-of-the-art literature review of WPT: Current limitations and solutions on IPT. Electric Power Systems Research 154:493−502

doi: 10.1016/j.jpgr.2017.09.018
[3]

Zhang Z, Pang H, Georgiadis A, Cecati C. 2019. Wireless power transfer—an overview. IEEE Transactions on Industrial Electronics 66:1044−58

doi: 10.1109/TIE.2018.2835378
[4]

Jia J, Yan X. 2020. Research tends of magnetic coupling resonant wireless power transfer characteristics. Transactions of China Electrotechnical Society 35:4217−31

doi: 10.19595/j.cnki.1000-6753.tces.191102
[5]

Li J, Zhu C, Xie J, Lu F, Zhang X. 2023. Design and implementation of high-misalignment tolerance WPT system for underwater vehicles based on a variable inductor. IEEE Transactions on Power Electronics 38:11726−37

doi: 10.1109/TPEL.2023.3267104
[6]

Feng J, Wei G, Cui J, Zhang J, Chen F, et al. 2023. A high-misalignment-tolerant and extensive vertical adaptation combined simultaneous transmission of power and data for WPT system. IEEE Journal of Emerging and Selected Topics in Power Electronics 11:6138−49

doi: 10.1109/JESTPE.2023.3323021
[7]

Tran DH, Vu VB, Choi W. 2018. Design of a high-efficiency wireless power transfer system with intermediate coils for the on-board chargers of electric vehicles. IEEE transactions on power electronics 33:175−87

doi: 10.1109/TPEL.2017.2662067
[8]

Chen Y, Yang B, Peng Y, Lu Y, Zhang Z, et al. 2023. Review of anti-misalignment technology in inductive wireless power transfer system. Proceedings of the Chinese Society of Electrical Engineering 43:5537−57

doi: 10.13334/j.0258-8013.pcsee.220022
[9]

Zhang Z, Zhu F, Xu D, Krein PT, Ma H. 2020. An integrated inductive power transfer system design with a variable inductor for misalignment tolerance and battery charging applications. IEEE Transactions on Power Electronics 35:11544−56

doi: 10.1109/TPEL.2020.2987906
[10]

Chen Y, Yang B, Li Q, Feng H, Zhou X, et al. 2020. Reconfigurable topology for IPT system maintaining stable transmission power over large coupling variation. IEEE Transactions on Power Electronics 35:4915−24

doi: 10.1109/TPEL.2019.2946778
[11]

Budhia M, Boys JT, Covic GA, Huang CY. 2013. Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems. IEEE Transactions on Industrial Electronics 60:318−28

doi: 10.1109/TIE.2011.2179274
[12]

Chen Y, Yang B, Zhou X, Li Q, He Z, et al. 2019. A hybrid inductive power transfer system with misalignment tolerance using quadruple-D quadrature pads. IEEE Transactions on Power Electronics 35:6039−49

doi: 10.1109/TPEL.2019.2954906
[13]

Xie S, Wu L, Zhang X, Huang J, Li L. 2024. Misalignment-tolerant wireless power transfer system based on double-layer quadrature double-D coil with magnetic field control. IEEE Transactions on Transportation Electrification 10:9945−58

doi: 10.1109/TTE.2024.3378758
[14]

Zaheer A, Covic GA, Kacprzak D. 2013. A bipolar pad in a 10-kHz 300-W distributed IPT system for AGV applications. IEEE Transactions on Industrial Electronics 61:3288−301

doi: 10.1109/TIE.2013.2281167
[15]

Wang Z, Hu C, Sun Y, Dai X. 2015. Design of magnetic coupler for inductive power transfer system based on output power and efficiency. Transactions of China Electrotechnical Society 30:26−31

[16]

Fotopoulou K, Flynn BW. 2011. Wireless power transfer in loosely coupled links: Coil misalignment model. IEEE Transactions on Magnetics 47:416−30

doi: 10.1109/TMAG.2010.2093534
[17]

Xiao H, Zhou Q, Xiong S, Yang Y, Xie S. 2022. Wireless power transfer system based on double-layer quadrature double-d coupling structure with anti-misalignment and anti-deflection. Transactions of China Electrotechnical Society 37:4004−18

doi: 10.19595/j.cnki.1000-6753.tces.211505
[18]

Li T, Li S, Liu Z, Lu S, Qiao Y, et al. 2025. Design and optimization of a perfectly symmetric planar spiral receiving coil with low E-field exposure for large-space WPT. IEEE Journal of Emerging and Selected Topics in Power Electronics 13:4086−97

doi: 10.1109/JESTPE.2024.3471657
[19]

Rong E, Sun P, Qiao K, Zhang X, Yang G, et al. 2024. Six-plate and hybrid-dielectric capacitive coupler for underwater wireless power transfer. IEEE Transactions on Power Electronics 39:2867−81

doi: 10.1109/TPEL.2023.3334888
[20]

Li Y, Zhao J, Yang Q, Liu L, Ma J, et al. 2019. A novel coil with high misalignment tolerance for wireless power transfer. IEEE Transactions on Magnetics 55:2800904

doi: 10.1109/TMAG.2019.2904086
[21]

Zhang Y, Chen S, Li X, Tang Y. 2022. Design methodology of free-positioning nonoverlapping wireless charging for consumer electronics based on antiparallel windings. IEEE Transactions on Industrial Electronics 69:825−34

doi: 10.1109/TIE.2020.3048322
[22]

Feng H, Cai T, Duan S, Zhao J, Zhang X, et al. 2016. An LCC-compensated resonant converter optimized for robust reaction to large coupling variation in dynamic wireless power transfer. IEEE Transactions on Industrial Electronics 63:6591−6601

doi: 10.1109/TIE.2016.2589922
[23]

Wang Y, Lu K, Yao Y, Liu X, Xu D. 2019. An electric vehicle (EV)-oriented wireless power transfer system featuring high misalignment tolerance. Proceedings of the Chinese Society of Electrical Engineering 39:3907−16

doi: 10.13334/j.0258-8013.pcsee.182223
[24]

Lu F, Zhang H, Hofmann H, Su W, Mi CC. 2018. A dual-coupled LCC-compensated IPT system with a compact magnetic coupler. IEEE Transactions on Power Electronics 33:6391−402

doi: 10.1109/TPEL.2017.2748391
[25]

Ahmad A, Alam MS, Mohamed AAS. 2019. Design and interoperability analysis of quadruple pad structure for electric vehicle wireless charging application. IEEE Transactions on Transportation Electrification 5:934−45

doi: 10.1109/TTE.2019.2929443