[1]

Zhao T, Tang H, Xie L, Zheng Y, Ma Z, et al. 2019. Scutellaria baicalensis Georgi. (Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology 71:1353−69

doi: 10.1111/jphp.13129
[2]

Xiang L, Gao Y, Chen S, Sun J, Wu J, et al. 2022. Therapeutic potential of Scutellaria baicalensis Georgi in lung cancer therapy. Phytomedicine 95:153727

doi: 10.1016/j.phymed.2021.153727
[3]

Stompor M, Żarowska B. 2016. Antimicrobial activity of xanthohumol and its selected structural analogues. Molecules 21:608

doi: 10.3390/molecules21050608
[4]

Tan YQ, Lin F, Ding YK, Dai S, Liang YX, et al. 2022. Pharmacological properties of total flavonoids in Scutellaria baicalensis for the treatment of cardiovascular diseases. Phytomedicine 107:154458

doi: 10.1016/j.phymed.2022.154458
[5]

Yu P, Li J, Luo Y, Sun J, Hu Y, et al. 2023. Mechanistic role of Scutellaria baicalensis Georgi in breast cancer therapy. The American Journal of Chinese Medicine 51:279−308

doi: 10.1142/S0192415X23500155
[6]

Wang Y, Liu Z, Liu G, Wang H. 2022. Research progress of active ingredients of Scutellaria baicalensis in the treatment of type 2 diabetes and its complications. Biomedicine & Pharmacotherapy 148:112690

doi: 10.1016/j.biopha.2022.112690
[7]

Song JW, Long JY, Xie L, Zhang LL, Xie QX, et al. 2020. Applications, phytochemistry, pharmacological effects, pharmacokinetics, toxicity of Scutellaria baicalensis Georgi. and its probably potential therapeutic effects on COVID-19: a review. Chinese Medicine 15:102

doi: 10.1186/s13020-020-00384-0
[8]

Yuan Y, Wu C, Liu Y, Yang J, Huang L. 2013. The Scutellaria baicalensis R2R3-MYB transcription factors modulates flavonoid biosynthesis by regulating GA metabolism in transgenic tobacco plants. PLoS One 8:e77275

doi: 10.1371/journal.pone.0077275
[9]

Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN. 1999. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. The Plant Journal 18:111−19

doi: 10.1046/j.1365-313X.1999.00431.x
[10]

Jaiswal V, Kakkar M, Kumari P, Zinta G, Gahlaut V, et al. 2022. Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. iScience 25:105026

doi: 10.1016/j.isci.2022.105026
[11]

Hakoshima T. 2018. Structural basis of the specific interactions of GRAS family proteins. FEBS Letters 592:489−501

doi: 10.1002/1873-3468.12987
[12]

Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada BH, Shaheen I, et al. 2022. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Molecular Biology Reports 49:9673−85

doi: 10.1007/s11033-022-07425-x
[13]

Bolle C, Koncz C, Chua NH. 2000. PAT1, a new member of the GRAS family, is involved in phytochrome A signal transduction. Genes & Development 14:1269−78

[14]

Greb T, Clarenz O, Schafer E, Muller D, Herrero R, et al. 2003. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes & Development 17:1175−87

doi: 10.1101/gad.260703
[15]

Niu Y, Zhao T, Xu X, Li J. 2017. Genome-wide identification and characterization of GRAS transcription factors in tomato (Solanum lycopersicum). PeerJ 5:e3955

doi: 10.7717/peerj.3955
[16]

Li P, Zhang B, Su T, Li P, Xin X, et al. 2018. BrLAS, a GRAS transcription factor from Brassica rapa, is involved in drought stress tolerance in transgenic Arabidopsis. Frontiers in Plant Science 9:1792

doi: 10.3389/fpls.2018.01792
[17]

Rui C, Peng F, Fan Y, Zhang Y, Zhang Z, et al. 2022. Genome-wide expression analysis of carboxylesterase (CXE) gene family implies GBCXE49 functional responding to alkaline stress in cotton. BMC Plant Biology 22:194

doi: 10.1186/s12870-022-03579-9
[18]

Marshall SDG, Putterill JJ, Plummer KM, Newcomb RD. 2003. The carboxylesterase gene family from Arabidopsis thaliana. Journal of Molecular Evolution 57:487−500

doi: 10.1007/s00239-003-2492-8
[19]

Iuchi S, Suzuki H, Kim YC, Iuchi A, Kuromori T, et al. 2007. Multiple loss-of-function of Arabidopsis gibberellin receptor AtGID1s completely shuts down a gibberellin signal. The Plant Journal 50:958−66

doi: 10.1111/j.1365-313X.2007.03098.x
[20]

Tian C, Wan P, Sun S, Li J, Chen M. 2004. Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Molecular Biology 54:519−32

doi: 10.1023/B:PLAN.0000038256.89809.57
[21]

To VT, Shi Q, Zhang Y, Shi J, Shen C, et al. 2020. Genome-wide analysis of the GRAS gene family in barley (Hordeum vulgare L.). Genes 11:553

doi: 10.3390/genes11050553
[22]

Huang W, Xian Z, Kang X, Tang N, Li Z. 2015. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC Plant Biology 15:209

doi: 10.1186/s12870-015-0590-6
[23]

Davière JM, Achard P. 2016. A pivotal role of DELLAs in regulating multiple hormone signals. Molecular Plant 9:10−20

doi: 10.1016/j.molp.2015.09.011
[24]

Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, et al. 2010. Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. The Plant Cell 22:2680−96

doi: 10.1105/tpc.110.075549
[25]

Peng J, Carol P, Richards DE, King KE, Cowling RJ, et al. 1997. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes & Development 11:3194−205

doi: 10.1101/gad.11.23.3194
[26]

Sun TP, Gubler F. 2004. Molecular mechanism of gibberellin signaling in plants. Annual Review of Plant Biology 55:197−223

doi: 10.1146/annurev.arplant.55.031903.141753
[27]

Gomez MD, Cored I, Barro-Trastoy D, Sanchez-Matilla J, Tornero P, et al. 2023. DELLA proteins positively regulate seed size in Arabidopsis. Development 150:dev201853

doi: 10.1242/dev.201853
[28]

Huang Y, Xiong H, Xie Y, Lyu S, Miao T, et al. 2022. BBX24 interacts with DELLA to regulate UV-B-induced photomorphogenesis in Arabidopsis thaliana. International Journal of Molecular Sciences 23:7386

doi: 10.3390/ijms23137386
[29]

Xiong H, Lu D, Li Z, Wu J, Ning X, et al. 2023. The DELLA-ABI4-HY5 module integrates light and gibberellin signals to regulate hypocotyl elongation. Plant Communications 4:100597

doi: 10.1016/j.xplc.2023.100597
[30]

Miao T, Li D, Huang Z, Huang Y, Li S, et al. 2021. Gibberellin regulates UV-B-induced hypocotyl growth inhibition in Arabidopsis thaliana. Plant Signaling & Behavior 16(11):1966587

doi: 10.1080/15592324.2021.1966587
[31]

Ueguchi-Tanaka M, Nakajima M, Katoh E, Ohmiya H, Asano K, et al. 2007. Molecular interactions of a soluble gibberellin receptor, GID1, with a rice DELLA protein, SLR1, and gibberellin. The Plant Cell 19:2140−55

doi: 10.1105/tpc.106.043729
[32]

Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, et al. 2003. Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896−98

doi: 10.1126/science.1081077
[33]

Hu S, Wang D, Wang W, Zhang C, Li Y, et al. 2022. Whole genome and transcriptome reveal flavone accumulation in Scutellaria baicalensis roots. Frontiers in Plant Science 13:1000469

doi: 10.3389/fpls.2022.1000469
[34]

Pei T, Zhu S, Liao W, Fang Y, Liu J, et al. 2023. Gap-free genome assembly and CYP450 gene family analysis reveal the biosynthesis of anthocyanins in Scutellaria baicalensis. Horticulture Research 10:uhad235

doi: 10.1093/hr/uhad235
[35]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[36]

Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3:1101−8

doi: 10.1038/nprot.2008.73
[37]

Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, et al. 2017. A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427−33

doi: 10.1038/nature22043
[38]

Cheng CS, Chen J, Tan HY, Wang N, Chen Z, et al. 2018. Scutellaria baicalensis and cancer treatment: recent progress and perspectives in biomedical and clinical studies. The American Journal of Chinese Medicine 46:25−54

doi: 10.1142/S0192415X18500027
[39]

Fang DN, Zheng CW, Ma YL. 2023. Effectiveness of Scutellaria baicalensis Georgi root in pregnancy-related diseases: a review. Journal of Integrative Medicine 21:17−25

doi: 10.1016/j.joim.2022.09.005
[40]

Guo Y, Wu H, Li X, Li Q, Zhao X, et al. 2017. Identification and expression of GRAS family genes in maize (Zea mays L. ). PLoS One 12:e0185418

doi: 10.1371/journal.pone.0185418
[41]

Zhao X, Liu DK, Wang QQ, Ke S, Li Y, et al. 2022. Genome-wide identification and expression analysis of the GRAS gene family in Dendrobium chrysotoxum. Frontiers in Plant Science 13:1058287

doi: 10.3389/fpls.2022.1058287
[42]

Wang N, Wang K, Li S, Jiang Y, Li L, et al. 2020. Transcriptome-wide identification, evolutionary analysis, and GA stress response of the GRAS gene family in Panax ginseng C. A. Meyer. Plants 9:190

doi: 10.3390/plants9020190
[43]

Cao X, Duan W, Wei C, Chen K, Grierson D, et al. 2019. Genome-wide identification and functional analysis of carboxylesterase and methylesterase gene families in peach (Prunus persica L. batsch). Frontiers in Plant Science 10:1511

doi: 10.3389/fpls.2019.01511
[44]

Li Y, Pang Q, Li B, Fu Y, Guo M, et al. 2024. Characteristics of CXE family of Salvia miltiorrhiza and identification of interactions between SmGID1s and SmDELLAs. Plant Physiology and Biochemistry 206:108140

doi: 10.1016/j.plaphy.2023.108140
[45]

Liu X, Widmer A. 2014. Genome-wide comparative analysis of the GRAS gene family in Populus, Arabidopsis and rice. Plant Molecular Biology Reporter 32:1129−45

doi: 10.1007/s11105-014-0721-5
[46]

Gao XH, Huang XZ, Xiao SL, Fu XD. 2008. Evolutionarily conserved DELLA-mediated gibberellin signaling in plants. Journal of Integrative Plant Biology 50:825−34

doi: 10.1111/j.1744-7909.2008.00703.x
[47]

Griffiths J, Murase K, Rieu I, Zentella R, Zhang ZL, et al. 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. The Plant Cell 18:3399−414

doi: 10.1105/tpc.106.047415
[48]

Yamamoto Y, Hirai T, Yamamoto E, Kawamura M, Sato T, et al. 2010. A rice gid1 suppressor mutant reveals that gibberellin is not always required for interaction between its receptor, GID1, and DELLA proteins. The Plant Cell 22:3589−602

doi: 10.1105/tpc.110.074542
[49]

Willige BC, Ghosh S, Nill C, Zourelidou M, Dohmann EMN, et al. 2007. The della Domain of ga insensitive Mediates the Interaction with the ga insensitive dwarf1a Gibberellin Receptor of Arabidopsis. The Plant Cell 19:1209−20

doi: 10.1105/tpc.107.051441