[1]

Singh RS, Walia AK. 2014. Microbial lectins and their prospective mitogenic potential. Critical Reviews in Microbiology 40:329−47

doi: 10.3109/1040841X.2012.733680
[2]

Konozy EHE, Osman MEM, Dirar AI, Ghartey-Kwansah G. 2022. Plant lectins: a new antimicrobial frontier. Biomedicine & Pharmacotherapy 155:113735

doi: 10.1016/j.biopha.2022.113735
[3]

Liu Y, Lin Y, Wei F, Lv Y, Xie F, et al. 2023. G-type receptor-like kinase AsNIP43 interacts with rhizobia effector nodulation outer protein P and is required for symbiosis. Plant Physiology 193:1527−46

doi: 10.1093/plphys/kiad318
[4]

Berny Mier y Teran JC, Konzen ER, Palkovic A, Tsai SM, Gepts P. 2020. Exploration of the yield potential of Mesoamerican wild common beans from contrasting eco-geographic regions by nested recombinant inbred populations. Frontiers in Plant Science 11:346

doi: 10.3389/fpls.2020.00346
[5]

Gonçalves A, Goufo P, Barros A, Domínguez-Perles R, Trindade H, et al. 2016. Cowpea (Vigna unguiculata L. Walp), a renewed multipurpose crop for a more sustainable agri-food system: nutritional advantages and constraints. Journal of the Science of Food and Agriculture 96:2941−51

doi: 10.1002/jsfa.7644
[6]

Jayakodi M, Golicz AA, Kreplak J, Fechete LI, Angra D, et al. 2023. The giant diploid faba genome unlocks variation in a global protein crop. Nature 615:652−59

doi: 10.1038/s41586-023-05791-5
[7]

Wu X, Li N, Hao J, Hu J, Zhang X, et al. 2017. Genetic diversity of Chinese and global pea (Pisum sativum L.) collections. Crop Science 57:1574−84

doi: 10.2135/cropsci2016.04.0271
[8]

Gan RY, Lui WY, Corke H. 2016. Sword bean (Canavalia gladiata) as a source of antioxidant phenolics. International Journal of Food Science and Technology 51:156−62

doi: 10.1111/ijfs.12979
[9]

Kamau EM, Kinyua MG, Waturu CN, Kiplagat O, Wanjala BW, et al. 2021. Diversity and population structure of local and exotic Lablab purpureus accessions in Kenya as revealed by microsatellite markers. Global Journal of Molecular Biology 3:8

doi: 10.28933/gjmb-2021-02-1505
[10]

Naithani S, Komath SS, Nonomura A, Govindjee G. 2021. Plant lectins and their many roles: carbohydrate-binding and beyond. Journal of Plant Physiology 266:153531

doi: 10.1016/j.jplph.2021.153531
[11]

Silva RMS, Buzo FF, Pavani RT, de Mendonça Ludgero AK, Taylor KMH, et al. 2023. Plant lectins: an overview. Peer Review 5:303−17

doi: 10.53660/812.prw2242
[12]

Pan L, Farouk MH, Qin G, Zhao Y, Bao N. 2018. The influences of soybean agglutinin and functional oligosaccharides on the intestinal tract of monogastric animals. International Journal of Molecular Sciences 19:554

doi: 10.3390/ijms19020554
[13]

Sharon N, Lis H. 2004. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R−62R

doi: 10.1093/glycob/cwh122
[14]

Wang P, Hu J, Min S, Chen C, Zhu Y, et al. 2023. Recombinant Phaseolus vulgaris phytohemagglutinin L-form expressed in the Bacillus brevis exerts in vitro and in vivo anti-tumor activity through potentiation of apoptosis and immunomodulation. International Immunopharmacology 120:110322

doi: 10.1016/j.intimp.2023.110322
[15]

Hwang Y, Jeong JH, Lee DH, Lee SJ. 2024. Selective interactions of Co2+–Ca2+–concanavalin A with high mannose N-glycans. Dalton Transactions 53:428−33

doi: 10.1039/D3DT03575A
[16]

Huldani H, Rashid AI, Turaev KN, Opulencia MJC, Abdelbasset WK, et al. 2022. Concanavalin A as a promising lectin-based anti-cancer agent: the molecular mechanisms and therapeutic potential. Cell Communication and Signaling 20:167

doi: 10.1186/s12964-022-00972-7
[17]

Bowles DJ, Lis H, Sharon N. 1979. Distribution of lectins in membranes of soybean and peanut plants. Planta 145:193−98

doi: 10.1007/BF00388717
[18]

Soliman MM, El-Shatoury EH, El-Araby MMI. 2024. Antibacterial and anticancer activities of three novel lectin-conjugated chitosan nanoparticles. Applied Microbiology and Biotechnology 108:524

doi: 10.1007/s00253-024-13344-7
[19]

Rungruangmaitree R, Jiraungkoorskul W. 2017. Pea, Pisum sativum, and its anticancer activity. Pharmacognosy Reviews 11:39−42

doi: 10.4103/phrev.phrev_57_16
[20]

Barre A, Van Damme EJM, Klonjkowski B, Simplicien M, Sudor J, et al. 2022. Legume lectins with different specificities as potential glycan probes for pathogenic enveloped viruses. Cells 11:339

doi: 10.3390/cells11030339
[21]

Van Holle S, Van Damme EJM. 2015. Distribution and evolution of the lectin family in soybean (Glycine max). Molecules 20:2868−91

doi: 10.3390/molecules20022868
[22]

Okay A, Aras ES, Büyük İ. 2022. Detailed characterization of lectin genes in common bean using bioinformatic tools. Communications-Faculty of Sciences University of Ankara Series C Biology 31:1−25

[23]

El-Araby MM, El-Shatoury EH, Soliman MM, Shaaban HF. 2020. Characterization and antimicrobial activity of lectins purified from three Egyptian leguminous seeds. AMB Express 10:90

doi: 10.1186/s13568-020-01024-4
[24]

Mazalovska M, Kouokam JC. 2018. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections. BioMed Research International 2018:3750646

doi: 10.1155/2018/3750646
[25]

Santos AFS, Silva MDC, Napoleão TH, Paiva PMG, Correia MTS, et al. 2014. Lectins: function, structure, biological properties and potential applications. In Current Topics in Peptide & Protein Research. India: Research Trends. Volume 15. pp. 41−62

[26]

Pu Q, Tan ZY, Peng GX, Li YT, Liu LH, et al. 2016. Advances in rhizobia taxonomy. Microbiology China 43:619−33

doi: 10.13344/j.microbiol.china.150407
[27]

Dolgikh AV, Salnikova EA, Dymo AM, Kantsurova ES, Aksenova TS, et al. 2025. Characterization and de novo genome assembly for new Rhizobium ruizarguesonis rhizobial strain Vst36-3 involved in symbiosis with Pisum and Vicia plants. Current Microbiology 82:284

doi: 10.1007/s00284-025-04265-3
[28]

Shamseldin A, Peix A, Velázquez E. 2022. Definition of the symbiovar viciae in the species Rhizobium azibense and biogeographic implications. Archives of Microbiology 205:18

doi: 10.1007/s00203-022-03330-w
[29]

Mousavi SA, Willems A, Nesme X, de Lajudie P, Lindström K. 2015. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Systematic and Applied Microbiology 38:84−90

doi: 10.1016/j.syapm.2014.12.003
[30]

Szczerba A, Płażek A, Kopeć P, Wójcik-Jagła M, Dubert F. 2024. Effect of different Bradyrhizobium japonicum inoculants on physiological and agronomic traits of soybean (Glycine max (L.) Merr.) associated with different expression of nodulation genes. BMC Plant Biology 24:1201

doi: 10.1186/s12870-024-05911-x
[31]

Chen JY, Gu J, Wang ET, Ma XX, Kang ST, et al. 2014. Wild peanut Arachis duranensis are nodulated by diverse and novel Bradyrhizobium species in acid soils. Systematic and Applied Microbiology 37:525−32

doi: 10.1016/j.syapm.2014.05.004
[32]

Raklami A, Slimani A, Oufdou K, Jemo M, Bechtaoui N, et al. 2024. The potential of plant growth-promoting bacteria isolated from arid heavy metal contaminated environments in alleviating salt and water stresses in alfalfa. Letters in Applied Microbiology 77:ovae075

doi: 10.1093/lambio/ovae075
[33]

Bromfield ESP, Cloutier S, Hynes MF. 2023. Ensifer canadensis sp. nov. strain T173T isolated from Melilotus albus (sweet clover) in Canada possesses recombinant plasmid pT173b harbouring symbiosis and type IV secretion system genes apparently acquired from Ensifer medicae. Frontiers in Microbiology 14:1195755

doi: 10.3389/fmicb.2023.1195755
[34]

Reyes-Pérez PJ, Jiménez-Guerrero I, Sánchez-Reina A, Civantos C, Castro NM, et al. 2025. The type VI secretion system of Sinorhizobium fredii USDA257 is required for successful nodulation with Glycine max cv Pekin. Microbial Biotechnology 18:e70112

doi: 10.1111/1751-7915.70112
[35]

Prévitali T, Rouault M, Pichereaux C, Gourion B. 2025. Lotus resistance against Ralstonia is enhanced by Mesorhizobium and does not impair mutualism. New Phytologist 245:1249−62

doi: 10.1111/nph.20276
[36]

Muresu R, Porceddu A, Concheri G, Stevanato P, Squartini A. 2022. Legumes of the Sardinia island: knowledge on symbiotic and endophytic bacteria and interactive software tool for plant species determination. Plants 11:1521

doi: 10.3390/plants11111521
[37]

Sun L, Wang D, Liu X, Zhou Y, Wang S, et al. 2025. The GlnE protein of Azorhizobium caulinodans ORS571 plays a crucial role in the nodulation process of the legume host Sesbania rostrata. Microbiological Research 293:128072

doi: 10.1016/j.micres.2025.128072
[38]

Golubev S, Rasterkovskaya M, Sungurtseva I, Burov A, Muratova A. 2024. Phenanthrene-degrading and nickel-resistant Neorhizobium strain isolated from hydrocarbon-contaminated rhizosphere of Medicago sativa L. Microorganisms 12:1586

doi: 10.3390/microorganisms12081586
[39]

Debnath S, Das A, Maheshwari DK, Pandey P. 2023. Treatment with atypical rhizobia, Pararhizobium giardinii and Ochrobactrum sp. modulate the rhizospheric bacterial community, and enhances Lens culinaris growth in fallow-soil. Microbiological Research 267:127255

doi: 10.1016/j.micres.2022.127255
[40]

Kawaguchi A. 2022. Biocontrol of grapevine crown gall performed using Allorhizobium vitis strain ARK-1. Applied Microbiology 2:981−91

doi: 10.3390/applmicrobiol2040075
[41]

Belkadi N, Ezzakkioui F, Saibari I, Chahboune R, Rfaki A, et al. 2022. Genetic diversity of rhizobia isolated from nodules of Trigonella foenum-graecum L. (fenugreek) cultivated in Northwestern Morocco. Archives of Microbiology 204:574

doi: 10.1007/s00203-022-03189-x
[42]

Golab Kesh S, Rajabzadeh Ghatromi E, Rashno M. 2022. Variation of rhizobium bacteria isolated from the ribosomal nodes of the root of alfalfa (Medicago sativa) plant using 16rRNA gene shear fragments. Cellular and Molecular Research 35:458−68

[43]

Han LL, Wang ET, Han TX, Liu J, Sui XH, et al. 2009. Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant and Soil 324:291−305

doi: 10.1007/s11104-009-9956-6
[44]

Zhang YM, Li Y, Chen WF, Wang ET, Tian CF, et al. 2011. Biodiversity and biogeography of rhizobia associated with soybean plants grown in the North China plain. Applied and Environmental Microbiology 77:6331−42

doi: 10.1128/AEM.00542-11
[45]

Aguilar OM, Collavino MM, Mancini U. 2022. Nodulation competitiveness and diversification of symbiosis genes in common beans from the American centers of domestication. Scientific Reports 12:4591

doi: 10.1038/s41598-022-08720-0
[46]

Adhikari D, Itoh K, Suyama K. 2013. Genetic diversity of common bean (Phaseolus vulgaris L.) nodulating rhizobia in Nepal. Plant and Soil 368:341−53

doi: 10.1007/s11104-012-1518-7
[47]

Ribeiro RA, Ormeño-Orrillo E, Dall'Agnol RF, Graham PH, Martinez-Romero E, et al. 2013. Novel Rhizobium lineages isolated from root nodules of the common bean (Phaseolus vulgaris L.) in Andean and Mesoamerican areas. Research in Microbiology 164:740−48

doi: 10.1016/j.resmic.2013.05.002
[48]

Han SZ, Wang ET, Chen WX. 2005. Diverse bacteria isolated from root nodules of Phaseolus vulgaris and species within the Genera Campylotropis and Cassia grown in China. Systematic and Applied Microbiology 28:265−76

doi: 10.1016/j.syapm.2004.12.005
[49]

Flores-Félix JD, Carro L, Cerda-Castillo E, Squartini A, Rivas R, et al. 2020. Analysis of the interaction between Pisum sativum L. and Rhizobium laguerreae strains nodulating this legume in northwest Spain. Plants 9:1755

doi: 10.3390/plants9121755
[50]

Ilahi H, Hsouna J, Ellouze W, Gritli T, Chihaoui SA, et al. 2021. Phylogenetic study of rhizobia nodulating pea (Pisum sativum) isolated from different geographic locations in Tunisia. Systematic and Applied Microbiology 44:126221

doi: 10.1016/j.syapm.2021.126221
[51]

Gürkanlı CT. 2021. Genetic diversity of rhizobia associated with Pisum sativum L. in the Northern part of Turkey. Biologia 76:3149−62

doi: 10.1007/s11756-021-00831-9
[52]

Li Y, Wang ET, Liu Y, Li X, Yu B, et al. 2016. Rhizobium anhuiense as the predominant microsymbionts of Lathyrus maritimus along the Shandong Peninsula seashore line. Systematic and Applied Microbiology 39:384−90

doi: 10.1016/j.syapm.2016.07.001
[53]

Zhang D. 2010. Diversity of rhizobia isolated from peanut nodules in main peanut producing region of northern China and relationship between the diversity and soil factors. Thesis. China Agricultural University, China

[54]

Bogino P, Banchio E, Giordano W. 2010. Molecular diversity of peanut-nodulating rhizobia in soils of Argentina. Journal of Basic Microbiology 50:274−79

doi: 10.1002/jobm.200900245
[55]

El-Akhal MR, Rincon A, El Mourabit N, Pueyo JJ, Barrijal S. 2009. Phenotypic and genotypic characterizations of rhizobia isolated from root nodules of peanut (Arachis hypogaea L.) grown in Moroccan soils. Journal of Basic Microbiology 49:415−25

doi: 10.1002/jobm.200800359
[56]

Kebede E, Amsalu B, Argaw A, Tamiru S. 2022. Nodulation potential and phenotypic diversity of rhizobia nodulating cowpea isolated from major growing areas of Ethiopia. Agrosystems, Geosciences & Environment 5:e20308

doi: 10.1002/agg2.20308
[57]

Jaiswal SK, Dakora FD. 2019. Widespread distribution of highly adapted Bradyrhizobium species nodulating diverse legumes in Africa. Frontiers in Microbiology 10:310

doi: 10.3389/fmicb.2019.00310
[58]

Muindi MM, Muthini M, Njeru EM, Maingi J. 2021. Symbiotic efficiency and genetic characterization of rhizobia and non rhizobial endophytes associated with cowpea grown in semi-arid tropics of Kenya. Heliyon 7:e06867

doi: 10.1016/j.heliyon.2021.e06867
[59]

Bosse MA, da Silva MB, de Oliveira NGRM, de Araujo MA, Rodrigues C, et al. 2021. Physiological impact of flavonoids on nodulation and ureide metabolism in legume plants. Plant Physiology and Biochemistry 166:512−21

doi: 10.1016/j.plaphy.2021.06.007
[60]

Li X, Li Z. 2023. What determines symbiotic nitrogen fixation efficiency in Rhizobium: recent insights into Rhizobium leguminosarum. Archives of Microbiology 205:300

doi: 10.1007/s00203-023-03640-7
[61]

Persson T, Battenberg K, Demina IV, Vigil-Stenman T, Vanden Heuvel B, et al. 2015. Candidatus Frankia datiscae Dg1, the Actinobacterial microsymbiont of Datisca glomerata, expresses the canonical nod genes nodABC in symbiosis with its host plant. PLoS One 10:e0127630

doi: 10.1371/journal.pone.0127630
[62]

Shimamura M, Kumaki T, Hashimoto S, Saeki K, Ayabe SI, et al. 2022. Phenolic acids induce nod factor production in Lotus japonicus–Mesorhizobium symbiosis. Microbes and Environments 37:ME21094

doi: 10.1264/jsme2.me21094
[63]

Hamblin J, Kent SP. 1973. Possible role of phytohaemagglutinin in Phaseolus vulgaris L. Nature New Biology 245:28−30

doi: 10.1038/newbio245028a0
[64]

Dazzo FB, Hubbell DH. 1975. Cross-reactive antigens and lectin as determinants of symbiotic specificity in the Rhizobium-clover association. Applied Microbiology 30:1017−33

doi: 10.1128/am.30.6.1017-1033.1975
[65]

Lerouge P, Roche P, Faucher C, Maillet F, Truchet G, et al. 1990. Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781−84

doi: 10.1038/344781a0
[66]

Pietraszewska-Bogiel A, Lefebvre B, Koini MA, Klaus-Heisen D, Takken FLW, et al. 2013. Interaction of Medicago truncatula lysin motif receptor-like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLoS One 8:e65055

doi: 10.1371/journal.pone.0065055
[67]

Fu B, Xu Z, Lei Y, Dong R, Wang Y, et al. 2023. A novel secreted protein, NISP1, is phosphorylated by soybean Nodulation Receptor Kinase to promote nodule symbiosis. Journal of Integrative Plant Biology 65:1297−311

doi: 10.1111/jipb.13436
[68]

Wani IA, ul Ashraf Z, Muzzaffar S. 2022. Erucic acid. In Handbook of Plant and Animal Toxins in Food, eds Nayik GA, Kour J. Boca Raton: CRC Press. pp. 169−76 doi: 10.1201/9781003178446-8

[69]

Tan X, Wang D, Zhang X, Zheng S, Jia X, et al. 2025. A pair of LysM receptors mediates symbiosis and immunity discrimination in Marchantia. Cell 188:1330−1348.e27

doi: 10.1016/j.cell.2024.12.024
[70]

Etzler ME, Kalsi G, Ewing NN, Roberts NJ, Day RB, et al. 1999. A nod factor binding lectin with apyrase activity from legume roots. Proceedings of the National Academy of Sciences of the United States of America 96:5856−61

doi: 10.1073/pnas.96.10.5856
[71]

Becana M, Wienkoop S, Matamoros MA. 2018. Sulfur transport and metabolism in legume root nodules. Frontiers in Plant Science 9:1434

doi: 10.3389/fpls.2018.01434
[72]

Ren Z, Zhang L, Li H, Yang M, Wu X, et al. 2025. The BRUTUS iron sensor and E3 ligase facilitates soybean root nodulation by monoubiquitination of NSP1. Nature Plants 11:595−611

doi: 10.1038/s41477-024-01896-5
[73]

Rodríguez-López J, López AH, Estrada-Navarrete G, Sánchez F, Díaz-Camino C. 2019. The noncanonical heat shock protein PvNod22 is essential for infection thread progression during rhizobial endosymbiosis in common bean. Molecular Plant-Microbe Interactions 32:939−48

doi: 10.1094/MPMI-02-19-0041-R
[74]

Ayra L, del Rocio Reyero-Saavedra M, Isidra-Arellano MC, Lozano L, Ramírez M, et al. 2021. Control of the rhizobia nitrogen-fixing symbiosis by common bean MADS-domain/AGL transcription factors. Frontiers in Plant Science 12:679463

doi: 10.3389/fpls.2021.679463
[75]

Martín-Rodríguez JÁ, Leija A, Formey D, Hernández G. 2018. The microRNA319d/TCP10 node regulates the common bean–rhizobia nitrogen-fixing symbiosis. Frontiers in Plant Science 9:1175

doi: 10.3389/fpls.2018.01175
[76]

Hernández-López A, Díaz M, Rodríguez-López J, Guillén G, Sánchez F, et al. 2019. Uncovering Bax inhibitor-1 dual role in the legume–rhizobia symbiosis in common bean roots. Journal of Experimental Botany 70:1049−61

doi: 10.1093/jxb/ery417
[77]

Guo P, Wang Y, Zhou X, Xie Y, Wu H, et al. 2013. Expression of soybean lectin in transgenic tobacco results in enhanced resistance to pathogens and pests. Plant Science 211:17−22

doi: 10.1016/j.plantsci.2013.06.001
[78]

Wang Z, Li Z, Zhang Y, Liao J, Guan K, et al. 2024. Root hair developmental regulators orchestrate drought triggered microbiome changes and the interaction with beneficial Rhizobiaceae. Nature Communications 15:10068

doi: 10.1038/s41467-024-54417-5
[79]

Wang X, Chen K, Zhou M, Gao Y, Huang H, et al. 2022. GmNAC181 promotes symbiotic nodulation and salt tolerance of nodulation by directly regulating GmNINa expression in soybean. New Phytologist 236:656−70

doi: 10.1111/nph.18343
[80]

Ye K, Zheng J, Dong Z, Wang S, Huang S, et al. 2025. Harnessing omics to decode the mechanisms of symbiotic nitrogen fixation. aBIOTECH

doi: 10.1007/s42994-025-00208-5