[1]

Ding L, Liu X, Fei T, Lin X, Hu X, et al. 2025. Chemical compositions, health benefits, safety assessment, and industrial applications of wampee (Clausena Lansium (Lour.) Skeels): a comprehensive review. Trends in Food Science & Technology 157:104922

doi: 10.1016/j.jpgs.2025.104922
[2]

Chokeprasert P, Charles AL, Sue KH, Huang TC. 2007. Volatile components of the leaves, fruits and seeds of wampee [Clausena Lansium (Lour.) Skeels]. Journal of Food Composition and Analysis 20:52−56

doi: 10.1016/j.jfca.2006.07.002
[3]

Li M, Feng F, Cheng L. 2012. Expression patterns of genes involved in sugar metabolism and accumulation during apple fruit development. PLoS One 7:e33055

doi: 10.1371/journal.pone.0033055
[4]

Eom JS, Chen LQ, Sosso D, Julius BT, Lin I, et al. 2015. SWEETs, transporters for intracellular and intercellular sugar translocation. Current Opinion in Plant Biology 25:53−62

doi: 10.1016/j.pbi.2015.04.005
[5]

Reinders A. 2012. Evolution of plant sucrose uptake transporters. Frontiers in Plant Science 3:22

doi: 10.3389/fpls.2012.00022
[6]

Reuscher S, Akiyama M, Yasuda T, Makino H, Aoki K, et al. 2014. The sugar transporter inventory of tomato: genome-wide identification and expression analysis. Plant and Cell Physiology 55:1123−41

doi: 10.1093/pcp/pcu052
[7]

Chen LQ. 2014. SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytologist 201:1150−55

doi: 10.1111/nph.12445
[8]

Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, et al. 2015. Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527:259−63

doi: 10.1038/nature15391
[9]

Chardon F, Bedu M, Calenge F, Klemens PAW, Spinner L, et al. 2013. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Current Biology 23:697−702

doi: 10.1016/j.cub.2013.03.021
[10]

Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, et al. 2010. Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468:527−32

doi: 10.1038/nature09606
[11]

Klemens PAW, Patzke K, Deitmer J, Spinner L, Le Hir R, et al. 2013. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiology 163:1338−52

doi: 10.1104/pp.113.224972
[12]

Zhang Z, Zou L, Ren C, Ren F, Wang Y, et al. 2019. VvSWEET10 mediates sugar accumulation in grapes. Genes 10:255

doi: 10.3390/genes10040255
[13]

Wang J, Wang Y, Zhang J, Ren Y, Li M, et al. 2021. The NAC transcription factor ClNAC68 positively regulates sugar content and seed development in watermelon by repressing ClINV and ClGH3.6. Horticulture Research 8:214

doi: 10.1038/s41438-021-00649-1
[14]

Wei W, Cheng MN, Ba LJ, Zeng RX, Luo DL, et al. 2019. Pitaya HpWRKY3 is associated with fruit sugar accumulation by transcriptionally modulating sucrose metabolic genes HpINV2 and HpSuSy1. International Journal of Molecular Sciences 20:1890

doi: 10.3390/ijms20081890
[15]

Hu X, Li S, Lin X, Fang H, Shi Y, et al. 2021. Transcription factor CitERF16 is involved in citrus fruit sucrose accumulation by activating CitSWEET11. Frontiers in Plant Science 12:809619

doi: 10.3389/fpls.2021.809619
[16]

Wei Y, Wang Y, Hu F, Wang W, Wei C, et al. 2024. The Clausena lansium genome provides new insights into alkaloid diversity and the evolution of the methyltransferase family. Journal of Integrative Agriculture 23:3537−53

doi: 10.1016/j.jia.2024.07.043
[17]

Chen H, Wang J, Wang X, Peng C, Chang X, et al. 2024. Identification of key genes controlling sugar and organic acid accumulation in wampee fruit (Clausena lansium) via genome assembly and genome-wide association analysis. Journal of Agricultural and Food Chemistry 72:22962−75

doi: 10.1021/acs.jafc.4c04830
[18]

Hu ZQ, Wang HC, Hu GB. 2005. Measurement of sugars, organic acids and vitamin C in litchi fruit by high performance liquid chromatography. Journal of Fruit Science 05:582−585

doi: 10.3969/j.issn.1009-9980.2005.05.035
[19]

Li L, Li N, Jiang S, Leng J, Wang X. 2009. Plant physiology module laboratory guide. Beijing: Science Press

[20]

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35:1547−49

doi: 10.1093/molbev/msy096
[21]

Feng C. 2018. Effect of SlSWEETs on sugar metabolism of tomato fruits and functional verification of four SlSWEETs genes. Thesis. Shenyang Agricultural University, China

[22]

Xie F, Chen C, Chen J, Chen J, Hua Q, et al. 2023. Betalain biosynthesis in red pulp pitaya is regulated via HuMYB132: a R-R type MYB transcription factor. BMC Plant Biology 23:28

doi: 10.1186/s12870-023-04049-6
[23]

Cheng MN, Huang ZJ, Hua QZ, Shan W, Kuang JF, et al. 2017. The WRKY transcription factor HpWRKY44 regulates CytP450-like1 expression in red pitaya fruit (Hylocereus polyrhizus). Horticulture Research 4:17039

doi: 10.1038/hortres.2017.39
[24]

Hu B, Lai B, Wang D, Li J, Chen L, et al. 2019. Three LcABFs are involved in the regulation of chlorophyll degradation and anthocyanin biosynthesis during fruit ripening in Litchi Chinensis. Plant and Cell Physiology 60:448−61

doi: 10.1093/pcp/pcy219
[25]

Zhao Z, Xu Z, Gao A, Chen Y, Huang J, et al. 2016. Changes in some physiological indexes of three developmental stages of Clausena lansium fruits. South China Fruits 45:53−55

[26]

Chen H, Peng C, Chang X, Chen Z, Lu Y, et al. 2022. Analysis of soluble sugar components and contents in fruits from different wampee germplasm resources. Guangdong Agricultural Sciences 49:8−18

doi: 10.16768/j.issn.1004-874X.2022.04.002
[27]

Lu W, Hao W, Liu K, Liu J, Yin C, et al. 2024. Analysis of sugar components and identification of SPS genes in citrus fruit development. Frontiers in Plant Science 15:1372809

doi: 10.3389/fpls.2024.1372809
[28]

Xue X, Wang J, Shukla D, Cheung LS, Chen LQ. 2022. When SWEETs turn tweens: updates and perspectives. Annual Review of Plant Biology 73:379−403

doi: 10.1146/annurev-arplant-070621-093907
[29]

Fang H, Shi Y, Liu S, Jin R, Sun J, et al. 2023. The transcription factor CitZAT5 modifies sugar accumulation and hexose proportion in citrus fruit. Plant Physiology 192:1858−76

doi: 10.1093/plphys/kiad156
[30]

Li X, Guo W, Li J, Yue P, Bu H, et al. 2020. Histone acetylation at the promoter for the transcription factor PuWRKY31 affects sucrose accumulation in pear fruit. Plant Physiology 182:2035−46

doi: 10.1104/pp.20.00002
[31]

Zhang B, Li YN, Wu BH, Yuan YY, Zhao ZY. 2022. Plasma membrane-localized transporter MdSWEET12 is involved in sucrose unloading in apple fruit. Journal of Agricultural and Food Chemistry 70:15517−30

doi: 10.1021/acs.jafc.2c05102
[32]

Zhang S, Wang H, Wang T, Zhang J, Liu W, et al. 2023. Abscisic acid and regulation of the sugar transporter gene MdSWEET9b promote apple sugar accumulation. Plant Physiology 192:2081−101

doi: 10.1093/plphys/kiad119
[33]

Yang C, Ying S, Tang B, Yu C, Wang Y, et al. 2025. The mechanistic insights into fruit ripening: integrating phytohormones, transcription factors, and epigenetic modification. Journal of Genetics and Genomics In Press, Journal Pre-proof

doi: 10.1016/j.jgg.2025.06.001
[34]

An JP, Zhang XW, Bi SQ, You CX, Wang XF, et al. 2020. The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. The Plant Journal 101:573−89

doi: 10.1111/tpj.14555
[35]

Zhang J, Yin XR, Li H, Xu MX, Zhang M, et al. 2020. ETHYLENE RESPONSE FACTOR39-MYB8 complex regulates low-temperature-induced lignification of loquat fruit. Journal of Experimental Botany 71:3172−84

doi: 10.1093/jxb/eraa085
[36]

Li SJ, Xie XL, Liu SC, Chen KS, Yin XR. 2019. Auto- and mutual-regulation between two CitERFs contribute to ethylene-induced citrus fruit degreening. Food Chemistry 299:125163

doi: 10.1016/j.foodchem.2019.125163
[37]

Liu YP, Guo JM, Liu YY, Hu S, Yan G, et al. 2019. Carbazole alkaloids with potential neuroprotective activities from the fruits of Clausena Lansium. Journal of Agricultural and Food Chemistry 67:5764−71

doi: 10.1021/acs.jafc.9b00961
[38]

Zhou P, Li J, Jiang H, Jin Q, Wang Y, et al. 2023. Analysis of bZIP gene family in lotus (Nelumbo) and functional study of NnbZIP36 in regulating anthocyanin synthesis. BMC Plant Biology 23:429

doi: 10.1186/s12870-023-04425-2