[1]

He B, Hu F, Du H, Cheng J, Pang B, et al. 2022. Omics-driven crop potassium use efficiency breeding. Frontiers in Plant Science 13:1076193

doi: 10.3389/fpls.2022.1076193
[2]

White PJ, Bell MJ, Djalovic I, Hinsinger P, Rengel Z. 2021. Potassium use efficiency of plants. In Improving Potassium Recommendations for Agricultural Crops, eds Murrell TS, Mikkelsen RL, Sulewski G, Norton R, Thompson ML. Cham: Springer. pp. 119–45 doi: 10.1007/978-3-030-59197-7_5

[3]

Rengel Z, Damon PM. 2008. Crops and genotypes differ in efficiency of potassium uptake and use. Physiologia Plantarum 133:624−36

doi: 10.1111/j.1399-3054.2008.01079.x
[4]

Sardans J, Peñuelas J. 2021. Potassium control of plant functions: ecological and agricultural implications. Plants 10:419

doi: 10.3390/plants10020419
[5]

Imtiaz H, Mir AR, Corpas FJ, Hayat S, Imtiaz H, et al. 2023. Impact of potassium starvation on the uptake, transportation, photosynthesis, and abiotic stress tolerance. Plant Growth Regulation 99:429−48

doi: 10.1007/s10725-022-00925-7
[6]

Cui J, Tcherkez G. 2021. Potassium dependency of enzymes in plant primary metabolism. Plant Physiology and Biochemistry 166:522−30

doi: 10.1016/j.plaphy.2021.06.017
[7]

Gerardeaux E, Jordan-Meille L, Constantin J, Pellerin S, Dingkuhn M. 2010. Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environmental and Experimental Botany 67:451−59

doi: 10.1016/j.envexpbot.2009.09.008
[8]

Oddo E, Inzerillo S, La Bella F, Grisafi F, Salleo S, et al. 2011. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiology 31:131−38

doi: 10.1093/treephys/tpq115
[9]

Hafsi C, Debez A, Abdelly C, Hafsi C, Debez A, et al. 2014. Potassium deficiency in plants: effects and signaling cascades. Acta Physiologiae Plantarum 36:1055−70

doi: 10.1007/s11738-014-1491-2
[10]

Du Q, Zhao XH, Xia L, Jiang CJ, Wang XG, et al. 2019. Effects of potassium deficiency on photosynthesis, chloroplast ultrastructure, ROS, and antioxidant activities in maize (Zea mays L.). Journal of Integrative Agriculture 18:395−406

doi: 10.1016/S2095-3119(18)61953-7
[11]

Xu X, Du X, Wang F, Sha J, Chen Q, et al. 2020. Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Frontiers in Plant Science 11:904

doi: 10.3389/fpls.2020.00904
[12]

White PJ. 2012. Ion uptake mechanisms of individual cells and roots: short-distance transport. In Marschner's Mineral Nutrition of Higher Plants, 3rd edition, ed. Marschner P. US: Academic Press. pp. 7–47 doi: 10.1016/B978-0-12-384905-2.00002-9

[13]

Réthoré E, Jing L, Ali N, Yvin JC, Pluchon S, et al. 2021. K deprivation modulates the primary metabolites and increases putrescine concentration in Brassica napus. Frontiers in Plant Science 12:681895

doi: 10.3389/fpls.2021.681895
[14]

Reich M. 2017. The significance of nutrient interactions for crop yield and nutrient use efficiency. In Plant Macronutrient Use Efficiency, eds Hossain MA, Kamiya T, Burritt DJ, Tran LSP, Fujiwara T. US: Academic Press. pp. 65–82 doi: 10.1016/B978-0-12-811308-0.00004-1

[15]

Fan M, Huang Y, Zhong Y, Kong Q, Xie J, et al. 2014. Comparative transcriptome profiling of potassium starvation responsiveness in two contrasting watermelon genotypes. Planta 239:397−410

doi: 10.1007/s00425-013-1976-z
[16]

Dhillon JS, Eickhoff EM, Mullen RW, Raun WR. 2019. World potassium use efficiency in cereal crops. Agronomy Journal 111:889−96

doi: 10.2134/agronj2018.07.0462
[17]

Shin R. 2017. Potassium sensing, signaling, and transport: toward improved potassium use efficiency in plants. In Plant Macronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants, eds Hossain MA, Kamiya T, Burritt DJ, Tran LSP, Fujiwara T. US: Academic Press. pp. 149−63 doi: 10.1016/B978-0-12-811308-0.00008-9

[18]

Carmona-Rojas LM, Gutiérrez-Rodríguez EA, Henao Ramírez AM, Urrea Trujillo AI. 2022. Nutrition in cacao (Theobroma cacao L.) crops: what determining factors should be considered? Revista de la Facultad de Agronomía 121:101

doi: 10.24215/16699513e101
[19]

Bhat R, Bhavishya, Sujatha S. 2024. Cocoa (Theobroma cacao L.). In Soil Health Management for Plantation Crops, eds Thomas GV, Krishnakumar V. Singapore: Springer. pp. 309–35 doi: 10.1007/978-981-97-0092-9_8

[20]

Bermúdez S, Voora V, Larrea C, Luna E. 2022. Cocoa prices and sustainability sustainable. International Institute for Sustainable Development. pp. 1−42. (Accessed March 19, 2025) www.iisd.org/publications/report/2022-global-market-report-cocoa

[21]

Abbott PC, Benjamin TJ, Burniske GR, Croft MM, Fenton M, et al. 2018. An Analysis of the Supply Chain of cacao in Colombia. United States Agency for International Development. pp. 1–69 www.semanticscholar.org/paper/An-analysis-of-the-supply-chain-of-cacao-in-Abbott-Benjamin/1a18806c48c3764021f40c0f8eb25fd20e1c3397

[22]

Orozco-Aguilar L, Lopez-Sampson A, Cerda RH, Casanoves F, Ramirez-Argueta O, et al. 2024. CacaoFIT: the network of cacao field trials in Latin America and its contribution to sustainable cacao farming in the region. Frontiers in Sustainable Food Systems 8:1370275

doi: 10.3389/fsufs.2024.1370275
[23]

de Almeida AF, Valle RR. 2007. Ecophysiology of the cacao tree. Brazilian Journal of Plant Physiology 19:425−48

doi: 10.1590/S1677-04202007000400011
[24]

Snoeck D, Koko L, Joffre J, Bastide P, Jagoret P. 2016. Cacao nutrition and fertilization. In Sustainable Agriculture Reviews, 2nd edition, ed. Lichtfouse E. Cham: Springer. Volume 19. pp. 155–202 doi: 10.1007/978-3-319-26777-7_4

[25]

Villalobos RA, Beriguete PF. 2017. Nutrient extraction by cocoa fruits in two locations in Costa Rica. Agronomía Mesoamericana 28:113−29

doi: 10.15517/am.v28i1.23236
[26]

Singh K, Sanderson T, Field D, Fidelis C, Yinil D. 2019. Soil security for developing and sustaining cocoa production in Papua New Guinea. Geoderma Regional 17:e00212

doi: 10.1016/j.geodrs.2019.e00212
[27]

van Vliet JA, Giller KE. 2017. Mineral nutrition of cocoa: a review. Advances in Agronomy 141:185−270

doi: 10.1016/bs.agron.2016.10.017
[28]

León-Moreno CE, Rojas-Molina J, Castilla-Campos CE. 2019. Physicochemical characteristics of cacao (Theobroma cacao L.) soils in Colombia: are they adequate to improve productivity? Agronomía Colombiana 37:28−38

doi: 10.15446/agron.colomb.v37n1.70545
[29]

Rodriguez-Medina C, Arana AC, Sounigo O, Argout X, Alvarado GA, et al. 2019. Cacao breeding in Colombia, past, present and future. Breeding Science 69:373−82

doi: 10.1270/jsbbs.19011
[30]

Fernández-Paz J, Cortés AJ, Hernández-Varela CA, Mejía-de-Tafur MS, Rodriguez-Medina C, et al. 2021. Rootstock-mediated genetic variance in cadmium uptake by juvenile cacao (Theobroma cacao L.) genotypes, and its effect on growth and physiology. Frontiers in Plant Science 12:777842

doi: 10.3389/fpls.2021.777842
[31]

Perea JA, Martínez N, Hernández FA, Cala TC. 2017. Características de la calidad del cacao: Catálogo de 26 cultivares. Bucaramanga: Universidad Industrial de Santander

[32]

Guerrero NM, Gallego G, Zapata P, Quintero C, Duarte D, et al. 2019. Caracterización morfoagronómica y molecular de la colección de cacao de la Federación Nacional de Cacaoteros de Colombia. Federación Nacional de Cacaoteros (FEDECACAO), Bogotá, Colombia www.icco.org/wp-content/uploads/T1.58.-CARACTERIZACION-MORFOAGRONOMICA-Y-MOLECULAR-DE-LA-COLECCION-DE-CACAO-DE-LA-FEDERACION-NACIONAL-DE-CACAOTEROS-DE-COLO.pdf

[33]

Tamayo-Ramirez JF, Carmona-Rojas LM, Urrea Trujillo AI. 2022. Efecto de la concentración del potasio (K) sobre el desarrollo morfológico y procesos fisiológicos de plántulas de cinco genotipos de Theobroma cacao L. Revista de la Facultad de Agronomía 121:094

doi: 10.24215/16699513e094
[34]

De Jesús Cordoba Córdoba-Gaona O, Monsalve-García DA, Hernández-Arredondo JD, Guerra-Hincapié JJ, Gil-Restrepo JP, et al. 2018. Gas exchange in young Hevea brasiliensis (Willd. Ex A. Juss.) Müll. Arg. (Euphorbiaceae) plants in Antioquia (Colombia). Corpoica Ciencia y Tecnología Agropecuaria, 19:91−101

doi: 10.21930/rcta.vol19_num1_art:847
[35]

R Team. 2020. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

[36]

Adams WW III, Demmig-Adams B. 2004. Chlorophyll fluorescence as a tool to monitor plant response to the environment. In Chlorophyll a Fluorescence: A Signature of Photosynthesis, eds Papageorgiou GC, Govindjee. Dordrecht: Springer. pp. 583–604 doi: 10.1007/978-1-4020-3218-9_22

[37]

Ruseani NS, Vanhove W, Susilo AW, Van Damme P, Ruseani NS, et al. 2022. Cocoa clones reveal variation in plant biomass, root nitrogen uptake, and apparent nitrogen recovery at the seedling stage. Journal of Soil Science and Plant Nutrition 22:4727−38

doi: 10.1007/s42729-022-00955-0
[38]

Fernández Lizarazo JC, Bohorquez Santana W, Rodríguez Villate A. 2016. Dinámica nutricional de cacao bajo diferentes tratamientos de fertilización con N, P y K en vivero. Revista Colombiana de Ciencias Hortícolas 10:367−80

doi: 10.17584/rcch.2016v10i2.4702
[39]

Liu J, Xia H, Gao Y, Pan D, Sun J, et al. 2022. Potassium deficiency causes more nitrate nitrogen to be stored in leaves for low-K sensitive sweet potato genotypes. Frontiers in Plant Science 13:1069181

doi: 10.3389/fpls.2022.1069181
[40]

Jia YB, Yang XE, Feng Y, Jilani G, Jia YB, et al. 2008. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency. Journal of Zhejiang University Science B 9:427−34

doi: 10.1631/jzus.B0710636
[41]

Song W, Xue R, Song Y, Bi Y, Liang Z, et al. 2018. Differential response of first-order lateral root elongation to low potassium involves nitric oxide in two tobacco cultivars. Journal of Plant Growth Regulation 37:114−27

doi: 10.1007/s00344-017-9711-9
[42]

Zeng J, Quan X, He X, Cai S, Ye Z, et al. 2018. Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley. BMC Plant Biology 18:187

doi: 10.1186/s12870-018-1404-4
[43]

Wang N, Hua H, Eneji AE, Li Z, Duan L, et al. 2012. Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). Journal of Photochemistry and Photobiology B: Biology 110:1−8

doi: 10.1016/j.jphotobiol.2012.02.002
[44]

Tränkner M, Tavakol E, Jákli B. 2018. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum 163:414−31

doi: 10.1111/ppl.12747
[45]

Wang C, Chen H, Hao Q, Sha A, Shan Z, et al. 2012. Transcript profile of the response of two soybean genotypes to potassium deficiency. PLoS One 7:e39856

doi: 10.1371/journal.pone.0039856
[46]

Ye Z, Zeng J, Ma X, Long L, Zhang G. 2021. Transcriptome profiling analysis reveals involvement of SAM cycle and methionine pathway in low potassium tolerance in barley. Current Plant Biology 25:100190

doi: 10.1016/j.cpb.2020.100190
[47]

Raddatz N, Morales de Los Ríos L, Lindahl M, Quintero FJ, Pardo JM. 2020. Coordinated transport of nitrate, potassium, and sodium. Frontiers in Plant Science 11:247

doi: 10.3389/fpls.2020.00247
[48]

Hu W, Zhao W, Yang J, Oosterhuis DM, Loka DA, et al. 2016. Relationship between potassium fertilization and nitrogen metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll during the boll development stage. Plant Physiology and Biochemistry 101:113−23

doi: 10.1016/j.plaphy.2016.01.019
[49]

Wang XG, Zhao XH, Jiang CJ, Li CH, Cong S, et al. 2015. Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). Journal of Integrative Agriculture 14:856−63

doi: 10.1016/S2095-3119(14)60848-0
[50]

Singh SK, Reddy VR. 2017. Potassium starvation limits soybean growth more than the photosynthetic processes across CO2 levels. Frontiers in Plant Science 8:991

doi: 10.3389/fpls.2017.00991
[51]

Lu Z, Hu W, Ren T, Zhu C, Li X, et al. 2019. Impact of K deficiency on leaves and siliques photosynthesis via metabolomics in Brassica napus. Environmental and Experimental Botany 158:89−98

doi: 10.1016/j.envexpbot.2018.11.008
[52]

Jákli B, Tavakol E, Tränkner M, Senbayram M, Dittert K. 2017. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. Journal of Plant Physiology 209:20−30

doi: 10.1016/j.jplph.2016.11.010
[53]

Shen C, Hu R, Tang YQ, Wang Z. 2018. Potassium nutrition recover impacts on stomatal, mesophyll and biochemical limitations to photosynthesis in Carya cathayensis and Hickory illinoensis. BioRxiv Preprint

doi: 10.1101/425629
[54]

Gomes ARS, Sodré GA, Guiltinan M, Lockwood R, Maximova S, et al. 2015. Supplying new cocoa (Theobroma cacao L.) planting material to farmers: a review. Bioversity International, Rome, Italy. 200 pp https://hdl.handle.net/10568/92942

[55]

Daymond A, Bekele F. 2022. Cacao. In Cash Crops, eds Priyadarshan P, Jain SM. Cham: Springer. pp. 23–53 doi: 10.1007/978-3-030-74926-2_2

[56]

Jaimez RE, Peña G, Barragán L, Chica E, Arteaga F, et al. 2023. The effect of water deficit on leaf stomatal conductance, water relations, chlorophyll fluorescence and growth of rootstock-scion combinations of cacao. Scientia Horticulturae 321:112335

doi: 10.1016/j.scienta.2023.112335
[57]

Asman A, bin Purung MH, Lambert S, Amiruddin A, Rosmana A. 2021. Effect of rootstock and scion on resistance of cocoa clones to vascular streak dieback caused by Ceratobasidium theobromae. Annals of Agricultural Sciences 66:25−30

doi: 10.1016/j.aoas.2021.02.005
[58]

Ribeiro MAQ, de Almeida AAF, Alves TFO, Gramacho KP, Pirovani CP, et al. 2016. Rootstock × scion interactions on Theobroma cacao resistance to witches' broom: photosynthetic, nutritional and antioxidant metabolism responses. Acta Physiologiae Plantarum 38:73

doi: 10.1007/s11738-016-2095-9
[59]

Arévalo-Hernández CO, Arévalo-Gardini E, Farfan A, Amaringo-Gomez M, Daymond A, et al. 2022. Growth and nutritional responses of Juvenile wild and domesticated cacao genotypes to soil acidity. Agronomy 12:3124

doi: 10.3390/agronomy12123124
[60]

Schmidt JE, DuVal A, Puig A, Tempeleu A, Crow T. 2021. Interactive and dynamic effects of rootstock and rhizobiome on scion nutrition in cacao seedlings. Frontiers in Agronomy 3:754646

doi: 10.3389/fagro.2021.754646
[61]

Galvis DA, Jaimes-Suárez YY, Molina JR, Ruiz R, León-Moreno CE, et al. 2023. Unveiling cacao rootstock-genotypes with potential use in the mitigation of cadmium bioaccumulation. Plants 12:2941

doi: 10.3390/plants12162941
[62]

Ribeiro MAQ, da Silva JO, Aitken WM, Machado RCR, Baligar VC. 2008. Nitrogen use efficiency in cacao genotypes. Journal of Plant Nutrition 31:239−49

doi: 10.1080/01904160701853720
[63]

Li YM, Elson M, Zhang D, He Z, Sicher R, et al. 2015. Macro and micro nutrient uptake parameters and use efficiency in cacao genotypes as influenced by levels of soil applied K. International Journal of Plant & Soil Science 7:80−90

doi: 10.9734/ijpss/2015/17368