[1]

Puga MI, Poza-Carrión C, Martinez-Hevia I, Perez-Liens L, Paz-Ares J. 2024. Recent advances in research on phosphate starvation signaling in plants. Journal of Plant Research 137:315−30

doi: 10.1007/s10265-024-01545-0
[2]

Prathap V, Kumar A, Maheshwari C, Tyagi A. 2022. Phosphorus homeostasis: acquisition, sensing, and long-distance signaling in plants. Molecular Biology Reports 49:8071−86

doi: 10.1007/s11033-022-07354-9
[3]

Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, López-Arredondo D, et al. 2017. Improving phosphorus use efficiency: a complex trait with emerging opportunities. The Plant Journal 90:868−85

doi: 10.1111/tpj.13423
[4]

Xiao X, Zhang J, Satheesh V, Meng F, Gao W, et al. 2022. SHORT-ROOT stabilizes PHOSPHATE1 to regulate phosphate allocation in Arabidopsis. Nature Plants 8:1074−81

doi: 10.1038/s41477-022-01231-w
[5]

Paz-Ares J, Puga MI, Rojas-Triana M, Martinez-Hevia I, Diaz S, et al. 2022. Plant adaptation to low phosphorus availability: core signaling, crosstalks, and applied implications. Molecular Plant 15:104−24

doi: 10.1016/j.molp.2021.12.005
[6]

Li L, Liu KH, Sheen J. 2021. Dynamic nutrient signaling networks in plants. Annual Review of Cell and Developmental Biology 37:341−67

doi: 10.1146/annurev-cellbio-010521-015047
[7]

Gao YQ, Bu LH, Han ML, Wang YL, Li ZY, et al. 2021. Long-distance blue light signalling regulates phosphate deficiency-induced primary root growth inhibition. Molecular Plant 14:1539−53

doi: 10.1016/j.molp.2021.06.002
[8]

Naumann C, Heisters M, Brandt W, Janitza P, Alfs C, et al. 2022. Bacterial-type ferroxidase tunes iron-dependent phosphate sensing during Arabidopsis root development. Current Biology 32:2189−2205.e6

doi: 10.1016/j.cub.2022.04.005
[9]

López-Arredondo DL, Leyva-González MA, González-Morales SI, López-Bucio J, Herrera-Estrella L. 2014. Phosphate nutrition: improving low-phosphate tolerance in crops. Annual Review of Plant Biology 65:95−123

doi: 10.1146/annurev-arplant-050213-035949
[10]

Oldroyd GED, Leyser O. 2020. A plant's diet, surviving in a variable nutrient environment. Science 368:eaba0196

doi: 10.1126/science.aba0196
[11]

Shi J, Zhao B, Zheng S, Zhang X, Wang X, et al. 2021. A phosphate starvation response-centered network regulates mycorrhizal symbiosis. Cell 184:5527−5540.e18

doi: 10.1016/j.cell.2021.09.030
[12]

Liao D, Sun C, Liang H, Wang Y, Bian X, et al. 2022. SlSPX1-SlPHR complexes mediate the suppression of arbuscular mycorrhizal symbiosis by phosphate repletion in tomato. The Plant Cell 34:4045−65

doi: 10.1093/plcell/koac212
[13]

Wang F, Deng M, Xu J, Zhu X, Mao C. 2018. Molecular mechanisms of phosphate transport and signaling in higher plants. Seminars in Cell & Developmental Biology 74:114−22

doi: 10.1016/j.semcdb.2017.06.013
[14]

Yang SY, Lin WY, Hsiao YM, Chiou TJ. 2024. Milestones in understanding transport, sensing, and signaling of the plant nutrient phosphorus. The Plant Cell 36:1504−23

doi: 10.1093/plcell/koad326
[15]

Lin D, Tian P, Zhu X, Lin Z, Li Z, et al. 2025. A PHR transcription factor-directed gene network reveals key regulators of phosphate metabolism and starvation responses in tomato. The Plant Cell 37:koaf171

doi: 10.1093/plcell/koaf171
[16]

Zhou J, Hu Q, Xiao X, Yao D, Ge S, et al. 2021. Mechanism of phosphate sensing and signaling revealed by rice SPX1-PHR2 complex structure. Nature Communications 12:7040

doi: 10.1038/s41467-021-27391-5
[17]

Dong J, Ma G, Sui L, Wei M, Satheesh V, et al. 2019. Inositol pyrophosphate InsP8 acts as an intracellular phosphate signal in Arabidopsis. Molecular Plant 12:1463−73

doi: 10.1016/j.molp.2019.08.002
[18]

Puga MI, Mateos I, Charukesi R, Wang Z, Franco-Zorrilla JM, et al. 2014. SPX1 is a phosphate-dependent inhibitor of PHOSPHATE STARVATION RESPONSE 1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 111:14947−52

doi: 10.1073/pnas.1404654111
[19]

Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, et al. 2014. SPX4 negatively regulates phosphate signaling and homeostasis through its interaction with PHR2 in rice. The Plant Cell 26:1586−97

doi: 10.1105/tpc.114.123208
[20]

Park SH, Jeong JS, Huang CH, Park BS, Chua NH. 2023. Inositol polyphosphates-regulated polyubiquitination of PHR1 by NLA E3 ligase during phosphate starvation response in Arabidopsis. New Phytologist 237:1215−28

doi: 10.1111/nph.18621
[21]

Escocard de Azevedo Manhães AM, Ortiz-Morea FA, He P, Shan L. 2021. Plant plasma membrane-resident receptors: surveillance for infections and coordination for growth and development. Journal of Integrative Plant Biology 63:79−101

doi: 10.1111/jipb.13051
[22]

Dievart A, Gottin C, Périn C, Ranwez V, Chantret N. 2020. Origin and diversity of plant receptor-like kinases. Annual Review of Plant Biology 71:131−56

doi: 10.1146/annurev-arplant-073019-025927
[23]

Xu LL, Cui MQ, Xu C, Zhang MJ, Li GX, et al. 2024. A clade of receptor-like cytoplasmic kinases and 14-3-3 proteins coordinate inositol hexaphosphate accumulation. Nature Communications 15:5107

doi: 10.1038/s41467-024-49102-6
[24]

Xue C, Li W, Shen R, Lan P. 2021. PERK13 modulates phosphate deficiency-induced root hair elongation in Arabidopsis. Plant Science 312:111060

doi: 10.1016/j.plantsci.2021.111060
[25]

Zhang Y, Wang Y, Wang E, Wu X, Zheng Q, et al. 2021. SlPHL1, a MYB-CC transcription factor identified from tomato, positively regulates the phosphate starvation response. Physiologia Plantarum 173:1063−77

doi: 10.1111/ppl.13503
[26]

Guo X, Li J, Zhang L, Zhang Z, He P, et al. 2020. Heterotrimeric G-protein α subunit (LeGPA1) confers cold stress tolerance to processing tomato plants (Lycopersicon esculentum Mill). BMC Plant Biology 20:394

doi: 10.1186/s12870-020-02615-w
[27]

Liu J, Zhang C, Sun H, Zang Y, Meng X, et al. 2024. A natural variation in SlSCaBP8 promoter contributes to the loss of saline–alkaline tolerance during tomato improvement. Horticulture Research 11:uhae055

doi: 10.1093/hr/uhae055
[28]

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCᴛ method. Methods 25:402−8

doi: 10.1006/meth.2001.1262
[29]

Deng L, Wang H, Sun C, Li Q, Jiang H, et al. 2018. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. Journal of Genetics and Genomics 45:51−54

doi: 10.1016/j.jgg.2017.10.002
[30]

Yang T, Ali M, Lin L, Li P, He H, et al. 2023. Recoloring tomato fruit by CRISPR/Cas9-mediated multiplex gene editing. Horticulture Research 10:uhac214

doi: 10.1093/hr/uhac214
[31]

Karimi M, Inzé D, Depicker A. 2002. GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends in Plant Science 7:193−95

doi: 10.1016/S1360-1385(02)02251-3
[32]

He Y, Zhang X, Li L, Sun Z, Li J, et al. 2021. SPX4 interacts with both PHR1 and PAP1 to regulate critical steps in phosphorus-status-dependent anthocyanin biosynthesis. New Phytologist 230:205−17

doi: 10.1111/nph.17139
[33]

Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, et al. 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. The Plant Cell 18:412−21

doi: 10.1105/tpc.105.038943
[34]

Lei KJ, Lin YM, Ren J, Bai L, Miao YC, et al. 2016. Modulation of the Phosphate-Deficient Responses by microRNA156 and its Targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis. Plant and Cell Physiology 57:192−203

doi: 10.1093/pcp/pcv197
[35]

Han M, Chen Y, Li R, Yu M, Fu L, et al. 2022. Root phosphatase activity aligns with the collaboration gradient of the root economics space. New Phytologist 234:837−49

doi: 10.1111/nph.17906
[36]

Yan F, Zhu Y, Müller C, Zörb C, Schubert S. 2002. Adaptation of H+-pumping and plasma membrane H+ ATPase activity in proteoid roots of white lupin under phosphate deficiency. Plant Physiology 129:50−63

doi: 10.1104/pp.010869