[1]

Rayman MP. 2012. Selenium and human health. The Lancet 379:1256−68

doi: 10.1016/S0140-6736(11)61452-9
[2]

Li L, Luo L, Raza A, Yin C. 2024. Both Bacillus amyloliquefaciens and selenite fertilizer application improved spring tea quality and selenium content. Journal of Soil Science and Plant Nutrition 24:7669−79

doi: 10.1007/s42729-024-02066-4
[3]

Ji H, Lin P, Wang H, Chen J, Ren R, et al. 2024. Assessment of Se, As, Cd, Cr, Hg, and Pb content status in Ankang tea plantations of China. Open Chemistry 22:20240054

doi: 10.1515/chem-2024-0054
[4]

Schiavon M, Pilon-Smits EAH. 2017. The fascinating facets of plant selenium accumulation – biochemistry, physiology, evolution and ecology. New Phytologist 213:1582−96

doi: 10.1111/nph.14378
[5]

Zhou J, Zhang C, Du B, Cui H, Fan X, et al. 2021. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties. Journal of Hazardous Materials 402:123546

doi: 10.1016/j.jhazmat.2020.123546
[6]

Zhu J, Huang S, Xiao F, Chen Z, Li Z, et al. 2024. Research progress on the effects of foliar selenium application on tea quality and tea tree resistance. Modern Agriculture Research 30(6):48−51

doi: 10.3969/j.issn.1674-0653.2024.06.010
[7]

Guo Q, Ye J, Zeng J, Chen L, Korpelainen H, et al. 2023. Selenium species transforming along soil–plant continuum and their beneficial roles for horticultural crops. Horticulture Research 10:uhac270

doi: 10.1093/hr/uhac270
[8]

Yuan Y, Liu D, Huang X, Wang S, Qiu R, et al. 2023. Effect of Enterobacter sp. EG16 on Selenium biofortification and speciation in pak choi (Brassica rapa ssp. chinensis). Scientia Horticulturae 310:111723

doi: 10.1016/j.scienta.2022.111723
[9]

Tian J, Lei J, Zhou J, Ni X, Chen C, et al. 2020. Preparation of red nano-elemental selenium by the fermentation of Herbaspirillum sp. WT00C-Se. Journal of Hubei University (Natural Science) 42(2):150−57

doi: 10.3969/j.issn.1000-2375.2020.02.005
[10]

Wang Y, Li Y, Wu Y, Liu Y, Chen Y, et al. 2025. Microbial selenium-enriched bacterial fertilizer: biofortification technology to boost pea sprout quality and selenium content. Agronomy 15(2):430

doi: 10.3390/agronomy15020430
[11]

Chen Y, Liu Z, Zeng W, Liu Y, Zhao D, et al. 2024. Screening and identification of soil selenium-enriched strains and application in Auricularia auricula. Microorganisms 12(6):1136

doi: 10.3390/microorganisms12061136
[12]

Huang S, Qin H, Jiang D, Lu J, Zhu Z, et al. 2024. Bio-nano selenium fertilizer improves the yield, quality, and organic selenium content in rice. Journal of Food Composition and Analysis 132:106348

doi: 10.1016/j.jfca.2024.106348
[13]

Huang S, Yu K, Wen L, Long X, Sun J, et al. 2023. Development and application of a new biological nano-selenium fermentation broth based on Bacillus subtilis SE201412. Scientific Reports 13:2560

doi: 10.1038/s41598-023-29737-z
[14]

Al-Hagar OEA, Abol-Fotouh D, Abdelkhalek ES, Abo Elsoud MM, Sidkey NM. 2021. Bacillus niabensis OAB2: outstanding bio-factory of selenium nanoparticles. Materials Chemistry and Physics 273:125147

doi: 10.1016/j.matchemphys.2021.125147
[15]

Li K, Xu Q, Gao S, Zhang S, Ma Y, et al. 2021. Highly stable selenium nanoparticles: assembly and stabilization via flagellin FliC and porin OmpF in Rahnella aquatilis HX2. Journal of Hazardous Materials 414:125545

doi: 10.1016/j.jhazmat.2021.125545
[16]

Sun C, Sun B, Chen L, Zhang M, Lu P, et al. 2024. Harnessing biosynthesized selenium nanoparticles for recruitment of beneficial soil microbes to plant roots. Cell Host & Microbe 32(12):2148−2160.e7

doi: 10.1016/j.chom.2024.10.015
[17]

Niu H, Zhan K, Xu W, Peng C, Hou C, et al. 2020. Selenium treatment modulates fluoride distribution and mitigates fluoride stress in tea plant (Camellia sinensis (L.) O. Kuntze). Environmental Pollution 267:115603

doi: 10.1016/j.envpol.2020.115603
[18]

Xu J, Zhang Y, Zhang M, Wei X, Zhou Y. 2024. Effects of foliar selenium application on Se accumulation, elements uptake, nutrition quality, sensory quality and antioxidant response in summer-autumn tea. Food Research International 175:113618

doi: 10.1016/j.foodres.2023.113618
[19]

Wang W, Gao T, Yang H, Sun Y, Yang J, et al. 2024. The balance between lignin and flavonoid metabolism has a central role in the changes of quality in young shoots of the tea plant (Camellia sinensis). Scientia Horticulturae 338:113788

doi: 10.1016/j.scienta.2024.113788
[20]

Zhu B, Qiao S, Li M, Cheng H, Ma Q, et al. 2023. Strong biosynthesis and weak catabolism of theanine in new shoots contribute to the high theanine accumulation in Albino/etiolated tea plant (Camellia sinensis). Beverage Plant Research 3:23

doi: 10.48130/BPR-2023-0023
[21]

Liao Q, Li AM, Xing Y, Liang PX, Jiang ZP, et al. 2024. Selenobacteria-mediated Se transformation and uptake involving the unique genetic code. Frontiers in Plant Science 15:1392355

doi: 10.3389/fpls.2024.1392355
[22]

Sonali JMI, Gayathri KV, Rangasamy G, Kumar PS, Rajagopal R. 2024. Efficacy of biogenic selenium nanoparticles from Pseudomonas Libanesis towards growth enhancement of Okra. Waste and Biomass Valorization 15:1793−806

doi: 10.1007/s12649-023-02233-1
[23]

Wang Y, Shu X, Zhou Q, Fan T, Wang T, et al. 2018. Selenite reduction and the biogenesis of selenium nanoparticles by Alcaligenes faecalis Se03 isolated from the gut of Monochamus alternatus (Coleoptera: Cerambycidae). International Journal of Molecular Sciences 19:2799

doi: 10.3390/ijms19092799
[24]

Huang S, Wang Y, Tang C, Jia H, Wu L. 2021. Speeding up selenite bioremediation using the highly selenite-tolerant strain Providencia rettgeri HF16-A novel mechanism of selenite reduction based on proteomic analysis. Journal of Hazardous Materials 406:124690

doi: 10.1016/j.jhazmat.2020.124690
[25]

Ning M, Guo P, Cui Y, Du G, Wang K, et al. 2025. Preparation of selenium in Kluyveromyces marxianus YG-4 and its protective effects in mice with patulin-induced jejunal injury. Food Bioscience 65:106033

doi: 10.1016/j.fbio.2025.106033
[26]

Di X, Jing R, Qin X, Liang X, Wang L, et al. 2024. The role and transcriptomic mechanism of cell wall in the mutual antagonized effects between selenium nanoparticles and cadmium in wheat. Journal of Hazardous Materials 472:134549

doi: 10.1016/j.jhazmat.2024.134549
[27]

Li L, Luo L, Zhan J, Raza A, Yin C. 2025. Combined application of Bacillus amyloliquefaciens and sodium selenite promotes tea seedling growth and selenium uptake by regulating the rhizosphere bacterial community. Biology and Fertility of Soils 61:259−75

doi: 10.1007/s00374-024-01883-0
[28]

Li Y, Jeyaraj A, Yu H, Wang Y, Ma Q, et al. 2020. Metabolic regulation profiling of carbon and nitrogen in tea plants [Camellia sinensis (L.) O. Kuntze] in response to shading. Journal of Agricultural and Food Chemistry 68:961−74

doi: 10.1021/acs.jafc.9b05858
[29]

Djanaguiraman M, Belliraj N, Bossmann SH, Vara Prasad PV. 2018. High-temperature stress alleviation by selenium nanoparticle treatment in grain sorghum. ACS Omega 3:2479−91

doi: 10.1021/acsomega.7b01934
[30]

Zahedi SM, Hosseini MS, Daneshvar Hakimi Meybodi N, Peijnenburg W. 2021. Mitigation of the effect of drought on growth and yield of pomegranates by foliar spraying of different sizes of selenium nanoparticles. Journal of the Science of Food and Agriculture 101:5202−13

doi: 10.1002/jsfa.11167
[31]

Ge S, Wang Y, Shen K, Wang Q, Ahammed GJ, et al. 2024. Effects of differential shading on summer tea quality and tea garden microenvironment. Plants 13(2):202

doi: 10.3390/plants13020202
[32]

Xing A, Shu Z, Huang P, Zhang Y, Sui X, et al. 2024. Exogenous hydrogen sulfide enhanced Al stress tolerance in tea plant Camellia sinensis. Beverage Plant Research 4:e024

doi: 10.48130/bpr-0024-0013
[33]

Sun Y, Wu Z, Xing A, Zhang H, Xu X, et al. 2024. Potassium alleviates fluoride accumulation and enhances fluoride tolerance in Camellia sinensis. Industrial Crops and Products 219:119062

doi: 10.1016/j.indcrop.2024.119062
[34]

Hao X, Long X, Zhao H, Liu J, Guo F, et al. 2024. CsABCG11.2 mediates theanine uptake to alleviate cadmium toxicity in tea plants (Camellia sinensis). Horticulture Advances 2:19

doi: 10.1007/s44281-024-00036-5
[35]

Yang J, Liu C, Li J, Zhang Y, Zhu C, et al. 2024. Critical review of fluoride in tea plants (Camellia sinensis): absorption, transportation, tolerance mechanisms, and defluorination measures. Beverage Plant Research 4:e019

doi: 10.48130/bpr-0024-0010
[36]

Jiao Y, Cai M, Zhang X, Feng Z, Zhang Q, et al. 2024. Impact of spreading time on flavor quality in Duyun Maojian summer green tea. LWT 214:117103

doi: 10.1016/j.lwt.2024.117103
[37]

Dong S, Wu S, He R, Hao F, Xu P, et al. 2024. Improving quality profiles of summer-autumn tea through the synergistic fermentation with three fungal strains. Food Bioscience 62:105543

doi: 10.1016/j.fbio.2024.105453
[38]

Zhang X, Yang X, Ruan J, Chen H. 2024. Epigallocatechin gallate (EGCG) nanoselenium application improves tea quality (Camellia sinensis L.) and soil quality index without losing microbial diversity: a pot experiment under field condition. Science of The Total Environment 914:169923

doi: 10.1016/j.scitotenv.2024.169923
[39]

Niu H, Zhan K, Cheng X, Deng Y, Hou C, et al. 2023. Selenium foliar application contributes to decrease ratio of water-soluble fluoride and improve physio-biochemical components in tea leaves. Ecotoxicology and Environmental Safety 266:115568

doi: 10.1016/j.ecoenv.2023.115568
[40]

Huang X, Tang Q, Chen C, Li Q, Lin H, et al. 2023. Combined analysis of transcriptome and metabolome provides insights into nano-selenium foliar applications to improve summer tea quality (Camellia sinensis). LWT 175:114496

doi: 10.1016/j.lwt.2023.114496
[41]

Gui JY, Rao S, Huang X, Liu X, Cheng S, et al. 2022. Interaction between selenium and essential micronutrient elements in plants: a systematic review. Science of The Total Environment 853:158673

doi: 10.1016/j.scitotenv.2022.158673