[1]

Kalb K, Staiger B, Elix JA. 2004. A monograph of the lichen genus Diorygma – a first attempt. Symbolae Botanicae Upsalienses 34:133−81

[2]

Feuerstein SC, Cunha-Dias IPR, Aptroot A, Eliasaro S, da Silva Cáceres ME. 2014. Three new Diorygma (Graphidaceae) species from Brazil, with a revised world key. The Lichenologist 46:753−61

doi: 10.1017/S002428291400036X
[3]

Fries EM. 1825. Systema orbis vegetabilis, Primas lineas novae constructionis periclitatur. Pars I, Plantae homonemae. Lundae: Typographia academica. pp. 1–369

[4]

Massalongo AB. 1860. Esame comparative di alcunigeneri di Licheni. Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti 5:247−337

[5]

Staiger B. 2002. Die Flechtenfamilie Graphidaceae: studien in Richtung einer natürlicheren Gliederung. Bibliotheca Lichenologica 85:1−526

[6]

Müller J. 1880. Lichenologische Beiträge X. Flora 63:17−24

[7]

Awasthi DD, Joshi M. 1979. Lichen genera Helminthocarpon, Cyclographa, and Cyclographina (gen. nov.). Norwegian Journal of Botany 26:165−77

[8]

Hyde KD, Noorabadi MT, Thiyagaraja V, He MQ, Johnston PR, et al. 2024. The 2024 Outline of Fungi and fungus-like taxa. Mycosphere 15:5146−6239

doi: 10.5943/mycosphere/15/1/25
[9]

Rivas Plata E, Lücking R, Lumbsch HT. 2012. A new classification for the family Graphidaceae (Ascomycota: Lecanoromycetes: Ostropales). Fungal Divers 52:107−21

doi: 10.1007/s13225-011-0135-8
[10]

Ansil PA, Rajeshkumar KC, Sharma B, Lücking R, Hawksworth DL. 2023. Phylogenetic placement and reappraisal of Diorygma karnatakense including the new synonym, Diorygma dandeliense, from Maharashtra, India. The Lichenologist 55(2):59−67

doi: 10.1017/S0024282923000087
[11]

Schumm F, Aptroot A. 2024. Rondônia. Brazilian Lichens 7:1−668

[12]

Sinha GP, Nayaka S, Mishra GK. 2024. A comprehensive checklist of lichens from India-2024. Cryptogam Biodiversity and Assessment 8(02):1−34

[13]

Aptroot A, Lücking R, da Silva Cáceres ME. 2023. New species and records of Graphidaceae and Gomphillaceae (lichenized fungi) from Brazil. Plant and Fungal Systematics 68(2):249−61

doi: 10.35535/pfsyst-2023-0010
[14]

Aptroot A, Lücking R, da Silva Cáceres ME. 2024. New species, records and combinations of Graphidaceae (lichenized fungi) from Brazil. The Bryologist 127(1):22−55

doi: 10.1639/0007-2745-127.1.022
[15]

Cui C, Li Y, Xu J, Zhao X, Jia Z. 2024. Diorygma tiantaiense sp. nov. and a checklist and key to Diorygma species from China. Diversity 16(4):213

doi: 10.3390/d16040213
[16]

Makhija U, Chitale G, Sharma B. 2009. New species and new records of Diorygma (Graphidaceae) from India: species with convergent exciples. Mycotaxon 109:379−92

doi: 10.5248/109.379
[17]

Singh P, Singh KP. 2017. New combinations in the family Graphidaceae (lichenized Ascomycota: Ostropales) from India. The Lichenologist 49:527−33

doi: 10.1017/S0024282917000330
[18]

Orange A, James PW, White FJ. 2001. Microchemical methods for the identification of lichens. London: British Lichen Society. pp. 101

[19]

Hametner C, Stocker-Wörgötter E, Rindi F, Grube M. 2014. Phylogenetic position and morphology of lichenized Trentepohliales (Ulvophyceae, Chlorophyta) from selected species of Graphidaceae. Phycological Research 62(3):170−86

doi: 10.1111/pre.12055
[20]

Kroken S, Taylor JW. 2000. Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Letharia. The Bryologist 103(4):645−60

doi: 10.1639/0007-2745(2000)103[0645:psrmas]2.0.co;2
[21]

Zoller S, Scheidegger C, Sperisen C. 1999. PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. The Lichenologist 31:511−16

doi: 10.1006/lich.1999.0220
[22]

Mangold A, Martín MP, Lücking R, ThorstenLumbsch H. 2008. Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales). Taxon 57:476−86

doi: 10.2307/25066016
[23]

Vilgalys R, Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238−46

doi: 10.1128/jb.172.8.4238-4246.1990
[24]

Kraichak E, Lücking R, Aptroot A, Beck A, Dornes P, et al. 2015. Hidden diversity in the morphologically variable script lichen (Graphis scripta) complex (Ascomycota, Ostropales, Graphidaceae). Organisms Diversity and Evolution 15:447−58

doi: 10.1007/s13127-015-0219-5
[25]

Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, et al. 2008. Database indexing for production MegaBLAST searches. Bioinformatics 24(16):1757−64

doi: 10.1093/bioinformatics/btn322
[26]

Zhu H, Hu Z, Liu G. 2017. Morphology and molecular phylogeny of Trentepohliales (Chlorophyta) from China. European Journal of Phycology 52(3):330−41

doi: 10.1080/09670262.2017.1309574
[27]

Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and evolution 38(7):3022−27

doi: 10.1093/molbev/msab120
[28]

Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30(22):3276−78

doi: 10.1093/bioinformatics/btu531
[29]

Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44(W1):W232−W235

doi: 10.1093/nar/gkw256
[30]

Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688−90

doi: 10.1093/bioinformatics/btl446
[31]

Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57:758−71

doi: 10.1080/10635150802429642
[32]

Nylander JAA. 2004. MrModeltest 2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University. Available from: www.abc.se/~nylander/. (Accessed 25 January 2025)

[33]

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3):539−42

doi: 10.1093/sysbio/sys029
[34]

Rambaut A. 2014. FigTree. Available from: http://tree.bio.ed.ac.uk/software/figtree/. (Accessed 26 January 2025)

[35]

Hawksworth DL. 1987. The evolution and adaptation of sexual reproductive structures in the Ascomycotina. In Evolutionary Biology of the Fungi, eds Rayner ADM, Brasier CM, Moore D. Cambridge: Cambridge University Press. pp. 179–89

[36]

Muggia L, Pérez-Ortega S, Kopun T, Zellnig G, Grube M. 2014. Photobiont selectivity leads to ecological tolerance and evolutionary divergence in a polymorphic complex of lichenized fungi. Annals of Botany 114(3):463−75

doi: 10.1093/aob/mcu146
[37]

Yahr R, Vilgalys R, Depriest PT. 2004. Strong fungal specificity and selectivity for algal symbionts in Florida scrub Cladonia lichens. Molecular Ecology 13(11):3367−78

doi: 10.1111/j.1365-294X.2004.02350.x
[38]

Kosecka M, Jabłońska A, Flakus A, Rodriguez-Flakus P, Kukwa M, et al. 2020. Trentepohlialean algae (Trentepohliales, Ulvophyceae) show preference to selected mycobiont lineages in lichen symbioses. Journal of Phycology 56(4):979−93

doi: 10.1111/jpy.12994
[39]

Borgato L, Ertz D, Van Rossum F, Verbeken A. 2022. The diversity of lichenized trentepohlioid algal (Ulvophyceae) communities is driven by fungal taxonomy and ecological factors. Journal of Phycology 58(4):582−602

doi: 10.1111/jpy.13252
[40]

Ansil PA, Rajeshkumar KC, Lücking R, O Paraparath SO, Sharma B. 2024. Molecular studies of Allographa effusosoredica sp. nov. (Graphidaceae) along with its Trentepohlia photobiont and a comprehensive checklist for Indian Allographa. Phytotaxa 664(1):31−45

doi: 10.11646/phytotaxa.664.1.3