[1]

Liang X, Zhang R, Gleason ML, Sun G. 2022. Sustainable apple disease management in China: challenges and future drections for a transforming Industry. Plant Disease 106:786−99

doi: 10.1094/PDIS-06-21-1190-FE
[2]

Feng S, Yi J, Li X, Wu X, Zhao Y, et al. 2021. Systematic review of phenolic compounds in apple fruits: compositions, distribution, absorption, metabolism, and processing stability. Journal of Agricultural and Food Chemistry 69:7−27

doi: 10.1021/acs.jafc.0c05481
[3]

Ulaszewska M, Vázquez-Manjarrez N, Garcia-Aloy M, Llorach R, Mattivi F, et al. 2018. Food intake biomarkers for apple, pear, and stone fruit. Genes & Nutrition 13:29

doi: 10.1186/s12263-018-0620-8
[4]

Yuste S, Ludwig IA, Rubió L, Romero MP, Pedret A, et al. 2019. In vivo biotransformation of (poly)phenols and anthocyanins of red-fleshed apple and identification of intake biomarkers. Journal of Functional Foods 55:146−55

doi: 10.1016/j.jff.2019.02.013
[5]

de Souza LP, Garbowicz K, Brotman Y, Tohge T, Fernie AR. 2020. The acetate pathway supports flavonoid and lipid biosynthesis in Arabidopsis. Plant Physiology 182:857−69

doi: 10.1104/pp.19.00683
[6]

Baldi P, Asquini E, Nicolussi Golo G, Populin F, Moser M. 2023. Isoenzymes of the flavonoid and phenylpropanoid pathways show organ-specific regulation during apple fruit development. International Journal of Molecular Sciences 24:14353

doi: 10.3390/ijms241814353
[7]

Dong NQ, Lin HX. 2021. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. Journal of Integrative Plant Biology 63:180−209

doi: 10.1111/jipb.13054
[8]

He M, Ding NZ. 2020. Plant unsaturated fatty acids: multiple roles in stress response. Frontiers in Plant Science 11:562785

doi: 10.3389/fpls.2020.562785
[9]

Masterson C, Wood C. 2001. Mitochondrial and peroxisomal β-oxidation capacities of organs from a non–oilseed plant. Proceedings of the Royal Society of London Series B: Biological Sciences 268:1949−53

doi: 10.1098/rspb.2001.1783
[10]

Wiszniewski AAG, Smith SM, Bussell JD. 2012. Conservation of two lineages of peroxisomal (Type I) 3-ketoacyl-CoA thiolases in land plants, specialization of the genes in Brassicaceae, and characterization of their expression in Arabidopsis thaliana. Journal of Experimental Botany 63:6093−103

doi: 10.1093/jxb/ers260
[11]

Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, et al. 2008. Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene–metabolite correlations in Arabidopsis. The Plant Cell 20:2160−76

doi: 10.1105/tpc.108.058040
[12]

Logemann E, Tavernaro A, Schulz W, Somssich IE, Hahlbrock K. 2000. UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley. Proceedings of the National Academy of Sciences of the United States of America 97:1903−7

doi: 10.1073/pnas.97.4.1903
[13]

Sadeghnezhad E, Sharifi M, Zare-Maivan H, Ahmadian Chashmi N. 2020. Time-dependent behavior of phenylpropanoid pathway in response to methyl jasmonate in Scrophularia striata cell cultures. Plant Cell Reports 39:227−43

doi: 10.1007/s00299-019-02486-y
[14]

Shafiq M, Singh Z, Ahmad SK. 2011. Pre-harvest spray application of methyl jasmonate improves red blush and flavonoid content in 'Cripps Pink' apple. The Journal of Horticultural Science and Biotechnology 86:422−30

doi: 10.1080/14620316.2011.11512784
[15]

An JP, Xu RR, Liu X, Zhang JC, Wang XF, et al. 2021. Jasmonate induces biosynthesis of anthocyanin and proanthocyanidin in apple by mediating the JAZ1–TRB1–MYB9 complex. The Plant Journal 106:1414−30

doi: 10.1111/tpj.15245
[16]

Wang S, Li LX, Fang Y, Li D, Mao Z, et al. 2022. MdERF1B–MdMYC2 module integrates ethylene and jasmonic acid to regulate the biosynthesis of anthocyanin in apple. Horticulture Research 8:uhac142

doi: 10.1093/hr/uhac142
[17]

Mach J. 2014. Lipids in leaves: fatty acid β-oxidation affects lipid homeostasis. The Plant Cell 26:3827

doi: 10.1105/tpc.114.133447
[18]

Fan J, Yu L, Xu C. 2017. A central role for triacylglycerol in membrane lipid breakdown, fatty acid β-oxidation, and plant survival under extended darkness. Plant Physiology 174:1517−30

doi: 10.1104/pp.17.00653
[19]

Cui P, Lin Q, Fang D, Zhang L, Li R, et al. 2018. Tung tree (Vernicia fordii, Hemsl.) genome and transcriptome sequencing reveals co-ordinate up-regulation of fatty acid β-oxidation and triacylglycerol biosynthesis pathways during eleostearic acid accumulation in seeds. Plant and Cell Physiology 59:1990−2003

doi: 10.1093/pcp/pcy117
[20]

Guo S, Guan L, Cao Y, Li C, Chen J, et al. 2016. Diversity of polyphenols in the peel of apple (Malus sp.) germplasm from different countries of origin. International Journal of Food Science and Technology 51:222−30

doi: 10.1111/ijfs.12994
[21]

Agius L, Peak M, Sherratt HSA. 1991. Differences between human, rat and guinea pig hepatocyte cultures: A comparative study of their rates of β-oxidation and esterification of palmitate and their sensitivity to R-etomoxir. Biochemical Pharmacology 42:1711−15

doi: 10.1016/0006-2952(91)90506-Z
[22]

Yao CH, Liu GY, Wang R, Moon SH, Gross RW, et al. 2018. Identifying off-target effects of etomoxir reveals that carnitine palmitoyltransferase I is essential for cancer cell proliferation independent of β-oxidation. PLoS Biology 16:e2003782

doi: 10.1371/journal.pbio.2003782
[23]

Masterson C, Wood C. 2009. Influence of mitochondrial β‐oxidation on early pea seedling development. New Phytologist 181:832−42

doi: 10.1111/j.1469-8137.2008.02717.x
[24]

Grabel'nich OI, Pivovarova NY, Pobezhimova TP, Kolesnichenko AV, Voinikov VK. 2009. The role of free fatty acids in mitochondrial energetic metabolism in winter wheat seedlings. Russian Journal of Plant Physiology 56:332−42

doi: 10.1134/S1021443709030054
[25]

Sellin J, Wingen C, Gosejacob D, Senyilmaz D, Hänschke L, et al. 2018. Dietary rescue of lipotoxicity-induced mitochondrial damage in Peroxin19 mutants. PLoS Biology 16:e2004893

doi: 10.1371/journal.pbio.2004893
[26]

Hosu A, Floare-Avram V, Magdas DA, Feher I, Inceu M, et al. 2016. The influence of the variety, vineyard, and vintage on the Romanian white wines quality. Journal of Analytical Methods in Chemistry 2016:4172187

doi: 10.1155/2016/4172187
[27]

Meng J, Zhang Y, Wang G, Ji M, Wang B, et al. 2022. Conduction of a chemical structure-guided metabolic phenotype analysis method targeting phenylpropane pathway via LC-MS: Ginkgo biloba and soybean as examples. Food Chemistry 390:133155

doi: 10.1016/j.foodchem.2022.133155
[28]

Wan H, Zhang X, Wang P, Qiu H, Guo Y, et al. 2022. Integrated multi-omics analysis of developing 'Newhall'orange and its glossy mutant provide insights into citrus fragrance formation. Horticultural Plant Journal 8:435−49

doi: 10.1016/j.hpj.2021.12.002
[29]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a "one for all, all for one" bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[30]

Wan H, Qiu H, Li Z, Zhang X, Zhang J, et al. 2022. Transcription factor CsESE3 positively modulates both jasmonic acid and wax biosynthesis in citrus. aBIOTECH 3:250−66

doi: 10.1007/s42994-022-00085-2
[31]

Henry-Kirk RA, McGhie TK, Andre CM, Hellens RP, Allan AC. 2012. Transcriptional analysis of apple fruit proanthocyanidin biosynthesis. Journal of Experimental Botany 63:5437−50

doi: 10.1093/jxb/ers193
[32]

Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, et al. 2010. Global metabolic profiling procedures for urine using UPLC-MS. Nature Protocols 5:1005−18

doi: 10.1038/nprot.2010.50
[33]

Illiano A, Pinto G, Carrera MA, Palmese A, Di Novella R, et al. 2022. LC–MS/MS-based quantification method of polyphenols for valorization of ancient apple cultivars from Cilento. ACS Food Science & Technology 2:647−54

doi: 10.1021/acsfoodscitech.1c00439
[34]

Butkeviciute A, Abukauskas V, Janulis V, Kviklys D. 2022. Phenolic content and antioxidant activity in apples of the 'galaval' cultivar grown on 17 different rootstocks. Antioxidants 11(2):266

doi: 10.3390/antiox11020266
[35]

Gao HN, Jiang H, Cui JY, You CX, Li YY. 2021. Review: the effects of hormones and environmental factors on anthocyanin biosynthesis in apple. Plant Science 312:111024

doi: 10.1016/j.plantsci.2021.111024
[36]

Zhang X, Xu J, Xu Z, Sun X, Zhu J, et al. 2020. Analysis of antioxidant activity and flavonoids metabolites in peel and flesh of red-fleshed apple varieties. Molecules 25:1968

doi: 10.3390/molecules25081968
[37]

Conroy MJ, Andrews RM, Andrews S, Cockayne L, Dennis Edward EA, et al. 2024. LIPID MAPS: update to databases and tools for the lipidomics community. Nucleic Acids Research 52:D1677−D1682

doi: 10.1093/nar/gkad896
[38]

Geană EI, Ciucure CT, Ionete RE, Ciocârlan A, Aricu A, et al. 2021. Profiling of phenolic compounds and triterpene acids of twelve apple (Malus domestica Borkh.) cultivars. Foods 10(2):267

doi: 10.3390/foods10020267
[39]

Gonzales-Vigil E, vonLoessl ME, Chen JY, Li S, Haslam TM, et al. 2021. Understanding the role of Populus ECERIFERUM2-likes in the biosynthesis of very-long-chain fatty acids for cuticular waxes. Plant and Cell Physiology 62:827−38

doi: 10.1093/pcp/pcab040
[40]

Yahyaa M, Ali S, Davidovich-Rikanati R, Ibdah M, Shachtier A, et al. 2017. Characterization of three chalcone synthase-like genes from apple (Malus × domestica Borkh.). Phytochemistry 140:125−33

doi: 10.1016/j.phytochem.2017.04.022
[41]

Li P, Lei K, Liu L, Zhang G, Ge H, et al. 2021. Identification and functional characterization of a new flavonoid synthase gene MdFLS1 from apple. Planta 253(5):105

doi: 10.1007/s00425-021-03615-2
[42]

Fujiwara Y, Kono M, Ito A, Ito M. 2018. Anthocyanins in perilla plants and dried leaves. Phytochemistry 147:158−66

doi: 10.1016/j.phytochem.2018.01.003
[43]

Li H, Tian J, Yao YY, Zhang J, Song TT, et al. 2019. Identification of leucoanthocyanidin reductase and anthocyanidin reductase genes involved in proanthocyanidin biosynthesis in Malus crabapple plants. Plant Physiology and Biochemistry 139:141−51

doi: 10.1016/j.plaphy.2019.03.003
[44]

Liao L, Vimolmangkang S, Wei G, Zhou H, Korban SS, et al. 2015. Molecular characterization of genes encoding leucoanthocyanidin reductase involved in proanthocyanidin biosynthesis in apple. Frontiers in Plant Science 6:243

doi: 10.3389/fpls.2015.00243
[45]

Jiang T, Zhang XF, Wang XF, Zhang DP. 2011. Arabidopsis 3-ketoacyl-CoA thiolase-2 (KAT2), an enzyme of fatty acid β-oxidation, is involved in ABA signal transduction. Plant and Cell Physiology 52:528−38

doi: 10.1093/pcp/pcr008
[46]

Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, et al. 2013. Acyl-lipid metabolism. The Arabidopsis Book 11:e0161

doi: 10.1199/tab.0161
[47]

Yan Y, Li XM, Chen Y, Wu TT, Ding CH, et al. 2023. Phosphorylation of KAT-2B by WKS1/Yr36 redirects the lipid flux to jasmonates to enhance resistance against wheat stripe rust. Journal of Genetics and Genomics 50:872−82

doi: 10.1016/j.jgg.2023.08.009
[48]

Wang N, Xu H, Jiang S, Zhang Z, Lu N, et al. 2017. MYB12 and MYB22 play essential roles in proanthocyanidin and flavonol synthesis in red-fleshed apple (Malus sieversii f. niedzwetzkyana). The Plant Journal 90:276−92

doi: 10.1111/tpj.13487
[49]

Ding T, Tomes S, Gleave AP, Zhang H, Dare AP, et al. 2022. microRNA172 targets APETALA2 to regulate flavonoid biosynthesis in apple (Malus domestica). Horticulture Research 9:uhab007

doi: 10.1093/hr/uhab007
[50]

Carbone K, Giannini B, Picchi V, Scalzo RL, Cecchini F. 2011. Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage. Food Chemistry 127:493−500

doi: 10.1016/j.foodchem.2011.01.030
[51]

Vrhovsek U, Rigo A, Tonon D, Mattivi F. 2004. Quantitation of polyphenols in different apple varieties. Journal of Agricultural and Food Chemistry 52:6532−38

doi: 10.1021/jf049317z
[52]

Wang X, Li C, Liang D, Zou Y, Li P, et al. 2015. Phenolic compounds and antioxidant activity in red-fleshed apples. Journal of Functional Foods 18:1086−94

doi: 10.1016/j.jff.2014.06.013
[53]

Sun H, Zhang P, Zhu Y, Lou Q, He S. 2018. Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (Ipomoea batatas (L.) Lam.). Scientific Reports 8:5018

doi: 10.1038/s41598-018-23397-0
[54]

Bars-Cortina D, Macià A, Iglesias I, Romero MP, Motilva MJ. 2017. Phytochemical profiles of new red-fleshed apple varieties compared with traditional and new white-fleshed varieties. Journal of Agricultural and Food Chemistry 65:1684−96

doi: 10.1021/acs.jafc.6b02931
[55]

Huang H, Liu B, Liu L, Song S. 2017. Jasmonate action in plant growth and development. Journal of Experimental Botany 68:1349−59

doi: 10.1093/jxb/erw495
[56]

Ryu JA, Duan S, Jeong HY, Lee C, Kang IK, et al. 2022. Pigmentation and flavonoid metabolite diversity in immature 'Fuji' apple fruits in response to lights and methyl jasmonate. International Journal of Molecular Sciences 23:1722

doi: 10.3390/ijms23031722