[1]

Wang W, Huo Y, Kang F, Liu H, Ren H, et al. 2025. Study on hazard of smoke generated by mining cable fires. Journal of Thermal Analysis and Calorimetry 150:12175−85

doi: 10.1007/s10973-023-12136-x
[2]

Zhang D, Sun YE, Li P, Zhang Y. 2016. Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Applied Materials & Interfaces 8(22):14142−49

doi: 10.1021/acsami.6b02206
[3]

Zhang D, Tong J, Xia B. 2014. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sensors and Actuators B: Chemical 197:66−72

doi: 10.1016/j.snb.2014.02.078
[4]

Zhang X, Yu L, Wu X, Hu W. 2015. Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene. Advanced Science 2(11):1500101

doi: 10.1002/advs.201500101
[5]

Cui H, Zhang X, Zhang J, Zhang Y. 2019. Nanomaterials-based gas sensors of SF6 decomposed species for evaluating the operation status of high-voltage insulation devices. High Voltage, 4(4):242−58

doi: 10.1049/hve.2019.0130
[6]

Chen D, Zhang X, Xiong H, Li Y, Tang J, et al. 2019. A first-principles study of the SF6 decomposed products adsorbed over defective WS2 monolayer as promising gas sensing device. IEEE Transactions on Device and Materials Reliability 19(3):473−83

doi: 10.1109/TDMR.2019.2919773
[7]

Wang Y, Kang N, Lin J, Lu S, Liew KM. 2023. On the pyrolysis characteristic parameters of four flame-retardant classes of PVC sheathless cable insulation materials. Journal of Analytical and Applied Pyrolysis 170:105901

doi: 10.1016/j.jaap.2023.105901
[8]

Wang Z, Hostikka S, Wang J. 2022. Pyrolysis behavior and kinetic analysis of waste polypropylene-based complex for cable filler. Case Studies in Thermal Engineering 37:102261

doi: 10.1016/j.csite.2022.102261
[9]

Liu H, Wang C, Zhang J, Zhao W, Fan M. 2020. Pyrolysis kinetics and thermodynamics of typical plastic waste. Energy & Fuels 34(2):2385−90

doi: 10.1021/acs.energyfuels.9b04152
[10]

Mamleev V, Bourbigot S, Le Bras M, Lefebvre J. 2004. Three model-free methods for calculation of activation energy in TG. Journal of Thermal Analysis and Calorimetry 78:1009−27

doi: 10.1007/s10973-004-0467-7
[11]

Chen R, Lu S, Zhang Y, Lo S. 2017. Pyrolysis study of waste cable hose with thermogravimetry/Fourier transform infrared/mass spectrometry analysis. Energy Conversion and Management 153:83−92

doi: 10.1016/j.enconman.2017.09.071
[12]

Qin L, Han J, Zhao B, Wang Y, Chen W, et al. 2018. Thermal degradation of medical plastic waste by in-situ FTIR, TG-MS and TG-GC/MS coupled analyses. Journal of Analytical and Applied Pyrolysis 136:132−45

doi: 10.1016/j.jaap.2018.10.012
[13]

Liu J, Guo X. 2017. ReaxFF molecular dynamics simulation of pyrolysis and combustion of pyridine. Fuel Processing Technology 161:107−15

doi: 10.1016/j.fuproc.2017.03.016
[14]

van Duin ACT, Dasgupta S, Lorant F, Goddard WA. 2001. ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A 105(41):9396−409

doi: 10.1021/jp004368u
[15]

Chen R, Liu Y, Yin C, Wang L, Zhang L, et al. 2023. A study on the pyrolysis of n-hexane initiated by 1-nitropropane: Molecular dynamics simulations and SVUV-PIMS experiments. Journal of Analytical and Applied Pyrolysis 175:106194

doi: 10.1016/j.jaap.2023.106194
[16]

Cao Y, Liu C, Zhang H, Xu X, Li Q. 2017. Thermal decomposition of HFO-1234yf through ReaxFF molecular dynamics simulation. Applied Thermal Engineering 126:330−38

doi: 10.1016/j.applthermaleng.2017.07.104
[17]

Si T, Huang K, Lin Y, Gu M. 2019. ReaxFF study on the effect of CaO on cellulose pyrolysis. Energy & Fuels 33(11):11067−77

doi: 10.1021/acs.energyfuels.9b02583
[18]

Jung CK, Braunwarth L, Jacob T. 2019. Grand canonical ReaxFF molecular dynamics simulations for catalytic reactions. Journal of Chemical Theory and Computation 15(11):5810−16

doi: 10.1021/acs.jctc.9b00687
[19]

Nie SQ, Chen MQ. 2024. Evaluation on the characteristics of homogeneous catalytic hydrothermal gasification of waste rubber based on ReaxFF-MD simulation. International Journal of Hydrogen Energy 51:758−69

doi: 10.1016/j.ijhydene.2023.10.201
[20]

Ma L, Zhang L, Wang D, Xin H, Ma Q. 2023. Effect of oxygen-supply on the reburning reactivity of pyrolyzed residual from sub-bituminous coal: a reactive force field molecular dynamics simulation. Energy 283:129151

doi: 10.1016/j.energy.2023.129151
[21]

Liu S, Wei L, Zhou Q, Yang T, Li S, et al. 2023. Simulation strategies for ReaxFF molecular dynamics in coal pyrolysis applications: a review. Journal of Analytical and Applied Pyrolysis 170:105882

doi: 10.1016/j.jaap.2023.105882
[22]

Li YY, Li GY, Zhang H, Wang JP, Li AQ, et al. 2017. ReaxFF study on nitrogen-transfer mechanism in the oxidation process of lignite. Fuel 193:331−42

doi: 10.1016/j.fuel.2016.12.081
[23]

Kato T, Yamada Y, Nishikawa Y, Ishikawa H, Sato S. 2021. Carbonization mechanisms of polyimide: Methodology to analyze carbon materials with nitrogen, oxygen, pentagons, and heptagons. Carbon 178:58−80

doi: 10.1016/j.carbon.2021.02.090
[24]

Wang Y, Mao Q, Wang Z, Luo KH, Zhou L, et al. 2023. A ReaxFF molecular dynamics study of polycyclic aromatic hydrocarbon oxidation assisted by nitrogen oxides. Combustion and Flame 248:112571

doi: 10.1016/j.combustflame.2022.112571
[25]

Pu Y, Liu C, Li Q, Xu X, Huo E. 2020. Pyrolysis mechanism of HFO-1234yf with R32 by ReaxFF MD and DFT method. International Journal of Refrigeration 109:82−91

doi: 10.1016/j.ijrefrig.2019.09.020
[26]

Kong J, Zhou K, Ren X, Chen Y, Li Y, et al. 2023. Insight into gaseous product distribution of cross-linked polyethylene pyrolysis using ReaxFF MD simulation and TG-MS. Journal of Analytical and Applied Pyrolysis 169:105847

doi: 10.1016/j.jaap.2022.105847
[27]

Peng C, Chu F, Xu M, Hou J, Zhang W, et al. 2024. Study on the pyrolysis characteristics of styrene-grafted polypropylene cable insulation material. AIP Advances 14(2):025134

doi: 10.1063/5.0189444
[28]

Döntgen M, Przybylski-Freund MD, Kröger LC, Kopp WA, Ismail AE, et al. 2015. Automated discovery of reaction pathways, rate constants, and transition states using reactive molecular dynamics simulations. Journal of Chemical Theory and Computation 11(6):2517−24

doi: 10.1021/acs.jctc.5b00201
[29]

Döntgen M, Schmalz F, Kopp WA, Kroger LC, Leonhard K. 2018. Automated chemical kinetic modeling via hybrid reactive molecular dynamics and quantum chemistry simulations. Journal of Chemical Information and Modeling 58(7):1343−55

doi: 10.1021/acs.jcim.8b00078
[30]

Arvelos S, Abrahão O, Eponina Hori C. 2019. ReaxFF molecular dynamics study on the pyrolysis process of cyclohexanone. Journal of Analytical and Applied Pyrolysis 141:104620

doi: 10.1016/j.jaap.2019.05.009
[31]

Zhou W, Zhang X, Zhou W, Yang L, Jia Z. 2022. Inhibition mechanism of electric field on polycyclic aromatic hydrocarbon formation during n-decane pyrolysis: a ReaxFF MD and DFT study. Journal of the Energy Institute 102:82−91

doi: 10.1016/j.joei.2022.02.013
[32]

Zhou W, Zhou W, Yue Y, Jia Z, Yang L. 2023. A ReaxFF and DFT study of effect and mechanism of an electric field on JP-10 fuel pyrolysis. Journal of the Energy Institute 111:101445

doi: 10.1016/j.joei.2023.101445
[33]

Wood MA, van Duin ACT, Strachan A. 2014. Coupled thermal and electromagnetic induced decomposition in the molecular explosive αHMX; a reactive molecular dynamics study. The Journal of Physical Chemistry A 118(5):885−95

doi: 10.1021/jp406248m
[34]

Hong D, Guo X. 2017. A reactive molecular dynamics study of CH4 combustion in O2/CO2/H2O environments. Fuel Processing Technology 167:416−24

doi: 10.1016/j.fuproc.2017.07.024
[35]

Bharti A, Banerjee T. 2016. Reactive force field simulation studies on the combustion behavior of n-octanol. Fuel Processing Technology 152:132−39

doi: 10.1016/j.fuproc.2016.06.027
[36]

Zhou L, Li F, Wang W, Zhang H, Duan Y, et al. 2025. Effects of phospholipids on pyrolysis and oxidation characteristics of Jatropha biodiesel: TG-FTIR-MS experiment and ReaxFF-MD simulation. Fuel 383:133816

doi: 10.1016/j.fuel.2024.133816
[37]

Liu Q, Liu S, Lv Y, Hu P, Huang Y, et al. 2021. Atomic-scale insight into the pyrolysis of polycarbonate by ReaxFF-based reactive molecular dynamics simulation. Fuel 287:119484

doi: 10.1016/j.fuel.2020.119484
[38]

Yu M, Lou R, Li H, Wang F, Wang J, et al. 2024. Reactive force field molecular dynamics (ReaxFF-MD) simulation of lignite combustion under an external electric field. Fuel 358:130184

doi: 10.1016/j.fuel.2023.130184