[1]

Farooq TH, Yan W, Rashid MHU, Tigabu M, Gilani MM, et al. 2019. Chinese fir (Cunninghamia lanceolata) a green gold of China with continues decline in its productivity over the successive rotations: a review. Applied Ecology and Environmental Research 17:11055−67

doi: 10.15666/aeer/1705_1105511067
[2]

Guo J, Feng H, Roberge G, Feng L, Pan C, et al. 2022. The negative effect of Chinese fir (Cunninghamia lanceolata) monoculture plantations on soil physicochemical properties, microbial biomass, fungal communities, and enzymatic activities. Forest Ecology and Management 519:120297

doi: 10.1016/j.foreco.2022.120297
[3]

Zhu D, Liu Y, Chen J, Jiang P. 2023. Long-term successive rotation affects soil microbial resource limitation and carbon use efficiency in Chinese fir (Cunninghamia lanceolata) monoculture plantations. Forest Ecology and Management 540:121037

doi: 10.1016/j.foreco.2023.121037
[4]

Selvaraj S, Duraisamy V, Huang Z, Guo F, Ma X. 2017. Influence of long-term successive rotations and stand age of Chinese fir (Cunninghamia lanceolata) plantations on soil properties. Geoderma 306:127−34

doi: 10.1016/j.geoderma.2017.07.014
[5]

Zhang Y, Ding K, Sun Q, Lu M, Liu Q, et al. 2024. Soil multifunctionality and nutrient cycling-related genes in Cunninghamia lanceolata plantations: metagenomic perspective insights into ecological restoration. Industrial Crops and Products 222:119608

doi: 10.1016/j.indcrop.2024.119608
[6]

Ding K, Zhang Y, Liu H, Yang X, Zhang J, et al. 2023. Soil bacterial community structure and functions but not assembly processes are affected by the conversion from monospecific Cunninghamia lanceolata plantations to mixed plantations. Applied Soil Ecology 185:104775

doi: 10.1016/j.apsoil.2022.104775
[7]

Feng Y, Schmid B, Loreau M, Forrester DI, Fei S, et al. 2022. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376:865−68

doi: 10.1126/science.abm6363
[8]

Zhang Y, Ding K, Yrjälä K, Liu H, Tong Z, et al. 2021. Introduction of broadleaf species into monospecific Cunninghamia lanceolata plantations changed the soil Acidobacteria subgroups composition and nitrogen-cycling gene abundances. Plant and Soil 467:29−46

doi: 10.1007/s11104-021-05014-8
[9]

Hou E, Luo Y, Kuang Y, Chen C, Lu X, et al. 2020. Global meta-analysis shows pervasive phosphorus limitation of aboveground plant production in natural terrestrial ecosystems. Nature Communications 11:637

doi: 10.1038/s41467-020-14492-w
[10]

Fan Z, Ku YS, Li Z, Dang K, Gao L, et al. 2025. Microbially mediated rhizospheric phosphorus turnover promotes wheat yield by enhancing phosphorus bioavailability. Agriculture, Ecosystems & Environment 387:109618

doi: 10.1016/j.agee.2025.109618
[11]

Wang K, Ren T, Lu Z, Li X, Zhang W, et al. 2025. Straw return and phosphorus (P) fertilization shape P-solubilizing bacterial communities and enhance P mobilization in rice-rapeseed rotation systems. Agriculture, Ecosystems & Environment 381:109434

doi: 10.1016/j.agee.2024.109434
[12]

An R, Moe LA. 2016. Regulation of pyrroloquinoline quinone-dependent glucose dehydrogenase activity in the model rhizosphere-dwelling bacterium Pseudomonas putida KT2440. Applied and Environmental Microbiology 82:4955−64

doi: 10.1128/AEM.00813-16
[13]

Hu M, Peñuelas J, Sardans J, Tong C, Chang CT, et al. 2020. Dynamics of phosphorus speciation and the phoD phosphatase gene community in the rhizosphere and bulk soil along an estuarine freshwater-oligohaline gradient. Geoderma 365:114236

doi: 10.1016/j.geoderma.2020.114236
[14]

Wang Y, Luo D, Xiong Z, Wang Z, Gao M. 2023. Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation. Soil and Tillage Research 225:105543

doi: 10.1016/j.still.2022.105543
[15]

Yang L, Du L, Li W, Wang R, Guo S. 2023. Divergent responses of phoD-and pqqC-harbouring bacterial communities across soil aggregates to long fertilization practices. Soil and Tillage Research 228:105634

doi: 10.1016/j.still.2023.105634
[16]

Shi Q, Song Q, Shan X, Li X, Wang S, et al. 2023. Microorganisms regulate soil phosphorus fractions in response to low nocturnal temperature by altering the abundance and composition of the pqqC gene rather than that of the phoD gene. Biology and Fertility of Soils 59:973−87

doi: 10.1007/s00374-023-01766-w
[17]

Hedley MJ, Stewart JWB, Chauhan BS. 1982. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal 46:970−76

doi: 10.2136/sssaj1982.03615995004600050017x
[18]

Wang K, Ren T, Yan J, Zhu D, Liao S, et al. 2022. Straw returning mediates soil microbial biomass carbon and phosphorus turnover to enhance soil phosphorus availability in a rice-oilseed rape rotation with different soil phosphorus levels. Agriculture, Ecosystems & Environment 335:107991

doi: 10.1016/j.agee.2022.107991
[19]

Gu Y, Ros GH, Zhu Q, Zheng D, Shen J, et al. 2023. Responses of total, reactive and dissolved phosphorus pools and crop yields to long-term fertilization. Agriculture, Ecosystems & Environment 357:108658

doi: 10.1016/j.agee.2023.108658
[20]

Dai Z, Liu G, Chen H, Chen C, Wang J, et al. 2020. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. The ISME Journal 14:757−70

doi: 10.1038/s41396-019-0567-9
[21]

Chen L, Xiang W, Ouyang S, Wu H, Xia Q, et al. 2021. Tight coupling of fungal community composition with soil quality in a Chinese fir plantation chronosequence. Land Degradation & Development 32:1164−78

doi: 10.1002/ldr.3771
[22]

German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, et al. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biology and Biochemistry 43:1387−97

doi: 10.1016/j.soilbio.2011.03.017
[23]

Ding K, Zhang Y, Yrjälä K, Tong Z, Zhang J. 2022. The introduction of Phoebe bournei into Cunninghamia lanceolata monoculture plantations increased microbial network complexity and shifted keystone taxa. Forest Ecology and Management 509:120072

doi: 10.1016/j.foreco.2022.120072
[24]

Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M. 2008. Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Science & Plant Nutrition 54:62−71

doi: 10.1111/j.1747-0765.2007.00210.x
[25]

Zheng BX, Hao XL, Ding K, Zhou GW, Chen QL, et al. 2017. Long-term nitrogen fertilization decreased the abundance of inorganic phosphate solubilizing bacteria in an alkaline soil. Scientific Reports 7:42284

doi: 10.1038/srep42284
[26]

Zhou J, Wu L, Deng Y, Zhi X, Jiang YH, et al. 2011. Reproducibility and quantitation of amplicon sequencing-based detection. The ISME Journal 5:1303−13

doi: 10.1038/ismej.2011.11
[27]

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology 37:852−57

doi: 10.1038/s41587-019-0209-9
[28]

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, et al. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods 13:581−83

doi: 10.1038/nmeth.3869
[29]

Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67:1−48

doi: 10.18637/jss.v067.i01
[30]

Lai J, Zou Y, Zhang J, Peres-Neto PR. 2022. Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution 13:782−88

doi: 10.1111/2041-210X.13800
[31]

Lai J, Zhu W, Cui D, Mao L. 2023. Extension of the glmm.hp package to zero-inflated generalized linear mixed models and multiple regression. Journal of Plant Ecology 16:rtad038

doi: 10.1093/jpe/rtad038
[32]

Tian J, Lu X, Chen Q, Kuang X, Liang C, et al. 2022. Phosphorus fertilization affects soybean rhizosphere phosphorus dynamics and the bacterial community in karst soils. Plant and Soil 475:137−52

doi: 10.1007/s11104-020-04662-6
[33]

Maharjan M, Maranguit D, Kuzyakov Y. 2018. Phosphorus fractions in subtropical soils depending on land use. European Journal of Soil Biology 87:17−24

doi: 10.1016/j.ejsobi.2018.04.002
[34]

Yadav R, Tarafdar J. 2001. Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biology and Fertility of Soils 34:140−43

doi: 10.1007/s003740100376
[35]

Turner BL, Brenes-Arguedas T, Condit R. 2018. Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555:367−70

doi: 10.1038/nature25789
[36]

Zhang H, Shi L, Wen D, Yu K. 2016. Soil potential labile but not occluded phosphorus forms increase with forest succession. Biology and Fertility of Soils 52:41−51

doi: 10.1007/s00374-015-1053-9
[37]

Chen C, Fang X, Xiang W, Lei P, Ouyang S, et al. 2020. Soil-plant co-stimulation during forest vegetation restoration in a subtropical area of Southern China. Forest Ecosystems 7:32

doi: 10.1186/s40663-019-0212-0
[38]

Huang W, Liu J, Wang YP, Zhou G, Han T, et al. 2013. Increasing phosphorus limitation along three successional forests in Southern China. Plant and Soil 364:181−91

doi: 10.1007/s11104-012-1355-8
[39]

Yeste A, Blanco JA, Imbert JB, Zozaya-Vela H, Elizalde-Arbilla M. 2021. Pinus sylvestris L. and Fagus sylvatica L. effects on soil and root properties and their interactions in a mixed forest on the Southwestern Pyrenees. Forest Ecology and Management 481:118726

doi: 10.1016/j.foreco.2020.118726
[40]

Wang W, Zhang Q, Sun X, Chen D, Insam H, et al. 2020. Effects of mixed-species litter on bacterial and fungal lignocellulose degradation functions during litter decomposition. Soil Biology and Biochemistry 141:107690

doi: 10.1016/j.soilbio.2019.107690
[41]

Gao G, Huang X, Xu H, Wang Y, Shen W, et al. 2022. Conversion of pure Chinese fir plantation to multi-layered mixed plantation enhances the soil aggregate stability by regulating microbial communities in subtropical China. Forest Ecosystems 9:100078

doi: 10.1016/j.fecs.2022.100078
[42]

Chen X, Taylor AR, Reich PB, Hisano M, Chen HYH, et al. 2023. Tree diversity increases decadal forest soil carbon and nitrogen accrual. Nature 618:94−101

doi: 10.1038/s41586-023-05941-9
[43]

Hou E, Tang S, Chen C, Kuang Y, Lu X, et al. 2018. Solubility of phosphorus in subtropical forest soils as influenced by low-molecular organic acids and key soil properties. Geoderma 313:172−80

doi: 10.1016/j.geoderma.2017.10.039
[44]

Bai J, Ye X, Jia J, Zhang G, Zhao Q, et al. 2017. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere 188:677−88

doi: 10.1016/j.chemosphere.2017.08.117
[45]

Yuan T, Chen S, Zhang Y, Ji L, Dari B, et al. 2022. Mechanism of increased soil phosphorus availability in a calcareous soil by ammonium polyphosphate. Biology and Fertility of Soils 58:649−65

doi: 10.1007/s00374-022-01650-z
[46]

Bi QF, Li KJ, Zheng BX, Liu XP, Li HZ, et al. 2020. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Science of The Total Environment 703:134977

doi: 10.1016/j.scitotenv.2019.134977
[47]

Wang C, Xue L, Jiao R. 2021. Soil phosphorus fractions, phosphatase activity, and the abundance of phoC and phoD genes vary with planting density in subtropical Chinese fir plantations. Soil and Tillage Research 209:104946

doi: 10.1016/j.still.2021.104946
[48]

Chen L, Xiang W, Wu H, Ouyang S, Zhou B, et al. 2019. Tree species identity surpasses richness in affecting soil microbial richness and community composition in subtropical forests. Soil Biology and Biochemistry 130:113−21

doi: 10.1016/j.soilbio.2018.12.008
[49]

Zhou Y, Clark M, Su J, Xiao C. 2015. Litter decomposition and soil microbial community composition in three Korean pine (Pinus koraiensis) forests along an altitudinal gradient. Plant and Soil 386:171−83

doi: 10.1007/s11104-014-2254-y
[50]

Liu M, Ye L, Chen L, Korpelainen H, Niinemets Ü, et al. 2024. Sex-specific phosphorus acquisition strategies and cycling in dioecious Populus euphratica forests along a natural water availability gradient. Plant, Cell & Environment 47:3266−81

doi: 10.1111/pce.14951
[51]

Chen W, Gao Y, Yang J, Fan F, Zhang W, et al. 2022. Taxonomical and functional bacterial community selection in the rhizosphere of the rice genotypes with different nitrogen use efficiencies. Plant and Soil 8:111−25

doi: 10.1007/s11104-021-05170-x
[52]

Wang L, Zhang L, George TS, Feng G. 2025. Hyphosphere core taxa link plant-arbuscular mycorrhizal fungi combinations to soil organic phosphorus mineralization. Soil Biology and Biochemistry 201:109647

doi: 10.1016/j.soilbio.2024.109647
[53]

Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. 2024. The interplay between microbial communities and soil properties. Nature Reviews Microbiology 22:226−39

doi: 10.1038/s41579-023-00980-5
[54]

Shi S, Gong X, Cheng S, Tao D, Chen X, et al. 2025. Maize growth as a function of cover crop-mediated soil microbiome. New Phytologist 248:872−85

doi: 10.1111/nph.70460
[55]

Li M, You Y, Tan X, Wen Y, Yu S, et al. 2022. Mixture of N2-fixing tree species promotes organic phosphorus accumulation and transformation in topsoil aggregates in a degraded karst region of subtropical China. Geoderma 413:115752

doi: 10.1016/j.geoderma.2022.115752