[1]

da Costa Moura M, Pinheiro PV, Vianello RP, de Sousa NL, de Faria JC, et al. 2024. Genetic transformation of common beans (Phaseolus vulgaris): achievements and challenges. Agriculture 14:2060

doi: 10.3390/agriculture14112060
[2]

Sim J, Kuwabara C, Sugano S, Adachi K, Yamada T. 2023. Recent advances in the improvement of soybean seed traits by genome editing. Plant Biotechnology 40:193−200

doi: 10.5511/plantbiotechnology.23.0610a
[3]

Xu H, Guo Y, Qiu L, Ran Y. 2022. Progress in soybean genetic transformation over the last decade. Frontiers in Plant Science 13:900318

doi: 10.3389/fpls.2022.900318
[4]

Zhi H, Zhou S, Pan W, Shang Y, Zeng Z, et al. 2022. The promising nanovectors for gene delivery in plant genome engineering. International Journal of Molecular Sciences 23:8501

doi: 10.3390/ijms23158501
[5]

Gelvin SB. 2003. Agobacterium-mediated plant transformation: the biology behind the "gene-Jockeying" tool. Microbiology and Molecular Biology Reviews 67:16−37

doi: 10.1128/MMBR.67.1.16-37.2003
[6]

Tzfira T, Citovsky V. 2006. Agrobacterium-mediated genetic transformation of plants: biology and biotechnology. Current Opinion in Biotechnology 17:147−54

doi: 10.1016/j.copbio.2006.01.009
[7]

Gelvin SB. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Physiology and Plant Molecular Biology 51:223−56

doi: 10.1146/annurev.arplant.51.1.223
[8]

Winans SC, Mantis NJ, Chen CY, Chang CH, Han DC. 1994. Host recognition by the VirA, VirG two-component regulatory proteins of Agrobacterium tumefaciens. Research in Microbiology 145:461−73

doi: 10.1016/0923-2508(94)90095-7
[9]

Li YG, Christie PJ. 2018. The Agrobacterium VirB/VirD4 T4SS: mechanism and architecture defined through in vivo mutagenesis and chimeric systems. In Agrobacterium Biology, ed. Gelvin S. Cham: Springer. Volume 418. pp. 233−60 doi: 10.1007/82_2018_94

[10]

Citovsky V, Guralnick B, Simon MN, Wall JS. 1997. The molecular structure of agrobacterium VirE2-single stranded DNA complexes involved in nuclear import. Journal of Molecular Biology 271(5):718−27

doi: 10.1006/jmbi.1997.1230
[11]

Cheng M, Lowe BA, Spencer TM, Ye X, Armstrong CL. 2004. Factors influencing Agrobacterium-mediated transformation of monocotyledonous species. In Vitro Cellular & Developmental Biology - Plant 40:31−45

doi: 10.1079/IVP2003501
[12]

Dan Y, Zhang S, Zhong H, Yi H, Sainz MB. 2015. Novel compounds that enhance Agrobacterium-mediated plant transformation by mitigating oxidative stress. Plant Cell Reports 34:291−309

doi: 10.1007/s00299-014-1707-3
[13]

Li J, Wu M, Igarashi Y, Luo F, Chang P. 2023. Agrobacterium tumefaciens-mediated transformation of the white-rot fungus Dichomitus squalens. Journal of Microbiological Methods 214:106842

doi: 10.1016/j.mimet.2023.106842
[14]

Salazar-González JA, Castro-Medina M, Bernardino-Rivera LE, Martínez-Terrazas E, Casson SA, et al. 2023. In-planta transient transformation of avocado (Persea americana) by vacuum agroinfiltration of aerial plant parts. Plant Cell, Tissue and Organ Culture 152:635−46

doi: 10.1007/s11240-022-02436-9
[15]

Maximova S, Miller C, Antúnez de Mayolo G, Pishak S, Young A, et al. 2003. Stable transformation of Theobroma cacao L. and influence of matrix attachment regions on GFP expression. Plant Cell Reports 21:872−83

doi: 10.1007/s00299-003-0596-7
[16]

Zhang MM, Ji LS, Xue H, Yang YT, Wu CA, et al. 2007. High transformation frequency of tobacco and rice via Agrobacterium-mediated gene transfer by flanking a tobacco matrix attachment region. Physiologia Plantarum 129:644−51

doi: 10.1111/j.1399-3054.2006.00779.x
[17]

Trull BN, Sultana MS, Pfotenhauer AC, Stockdale JN, Pantalone V, et al. 2024. Robust soybean leaf agroinfiltration. Plant Cell Reports 43:162

doi: 10.1007/s00299-024-03245-4
[18]

Pitzschke A. 2013. Agrobacterium infection and plant defense—transformation success hangs by a thread. Frontiers in Plant Science 4:519

doi: 10.3389/fpls.2013.00519
[19]

Wang G, Xu X, Gao Z, Liu T, Li Y, et al. 2022. Genome-wide identification of LEA gene family and cold response mechanism of BcLEA4-7 and BcLEA4-18 in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Plant Science 321:111291

doi: 10.1016/j.plantsci.2022.111291
[20]

Zhang J, Liu F, Yao L, Luo C, Zhao Q, et al. 2011. Vacuum infiltration transformation of non-heading Chinese cabbage (Brassica rapa L. ssp. chinensis) with the pinII gene and bioassay for diamondback moth resistance. Plant Biotechnology Reports 5:217−24

doi: 10.1007/s11816-011-0176-1
[21]

Wang H, Li Z, Ren H, Zhang C, Xiao D, et al. 2022. Regulatory interaction of BcWRKY33A and BcHSFA4A promotes salt tolerance in non-heading Chinese cabbage [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Horticulture Research 9:uhac113

doi: 10.1093/hr/uhac113
[22]

Yarra R, Xue Y. 2020. Ectopic expression of nucleolar DEAD-Box RNA helicase OsTOGR1 confers improved heat stress tolerance in transgenic Chinese cabbage. Plant Cell Reports 39:1803−14

doi: 10.1007/s00299-020-02608-x
[23]

Li Y, Guo G, Xu H, He T, Zong Y, et al. 2021. Comparative transcriptome analysis reveals compatible and recalcitrant genotypic response of barley microspore-derived embryogenic callus toward Agrobacterium infection. BMC Plant Biology 21:579

doi: 10.1186/s12870-021-03346-2
[24]

Domingo G, Locato V, Cimini S, Ciceri L, Marsoni M, et al. 2024. A comprehensive characterization and expression profiling of defensin family peptides in Arabidopsis thaliana with a focus on their abiotic stress-specific transcriptional modulation. Current Plant Biology 39:100376

doi: 10.1016/j.cpb.2024.100376
[25]

Liu Y, Joly V, Sabar M, Matton DP, Morse D. 2025. Differential gene expression analysis identifies a group of defensin like peptides from Solanum chacoense ovules with in vitro pollen tube attraction activity. Plant Molecular Biology 115:75

doi: 10.1007/s11103-025-01608-3
[26]

Shen H, Xiao D, Hou X. 2018. Cloning and expression analysis of flowering time candidate gene BcVIL1 in non-heading Chinese cabbage. Journal of Nanjing Agricultural University 41(5):825−31

doi: 10.7685/jnau.201711011
[27]

Mu H, Chen J, Huang W, Huang G, Deng M, et al. 2024. OmicShare tools: a zero-code interactive online platform for biological data analysis and visualization. iMeta 3:e228

doi: 10.1002/imt2.228
[28]

Wang X, Liu Z, Kang L, Yang L. 2025. Mapping of silique length and seeds per silique and transcriptome profiling of pod walls in Brassica napus L. Acta Agronomica Sinica 51(4):888−99

doi: 10.3724/SP.J.1006.2025.44156
[29]

Badawi GH, Yamauchi Y, Shimada E, Sasaki R, Kawano N, et al. 2004. Enhanced tolerance to salt stress and water deficit by overexpressing superoxide dismutase in tobacco (Nicotiana tabacum) chloroplasts. Plant Science 166:919−28

doi: 10.1016/j.plantsci.2003.12.007
[30]

Badawi GH, Kawano N, Yamauchi Y, Shimada E, Sasaki R, et al. 2004. Over-expression of ascorbate peroxidase in tobacco chloroplasts enhances the tolerance to salt stress and water deficit. Physiologia Plantarum 121:231−38

doi: 10.1111/j.0031-9317.2004.00308.x
[31]

Xiong Y, Zhao D, Chen S, Yuan L, Zhang D, et al. 2023. Deciphering the underlying immune network of the potato defense response inhibition by Phytophthora infestans nuclear effector Pi07586 through transcriptome analysis. Frontiers in Plant Science 14:1269959

doi: 10.3389/fpls.2023.1269959
[32]

Pudake RN, Swaminathan S, Sahu BB, Leandro LF, Bhattacharyya MK. 2013. Investigation of the Fusarium virguliforme fvtox1 mutants revealed that the FvTox1 toxin is involved in foliar sudden death syndrome development in soybean. Current Genetics 59:107−17

doi: 10.1007/s00294-013-0392-z
[33]

Mauro ML, Bettini PP. 2021. Agrobacterium rhizogenes rolB oncogene: an intriguing player for many roles. Plant Physiology and Biochemistry 165:10−18

doi: 10.1016/j.plaphy.2021.04.037
[34]

Han Z, Xiong D, Xu Z, Liu T, Tian C, et al. 2021. The Cytospora chrysosperma virulence effector CcCAP1 mainly localizes to the plant nucleus to suppress plant immune responses. mSphere 6:e00883-20

doi: 10.1128/msphere.00883-20
[35]

Xiao WM, Zhao MC, Zou M, Tan YD, Zhang XG. 2014. Differences in differential gene expression between young and mature Arabidopsis C58 tumours. Plant Biology 16:539−49

doi: 10.1111/plb.12092
[36]

Hamid NSZ. 2018. Development of microprogation and Agrobacterium-mediated transformation protocols for pineapple (Ananas comosus) var. MD2. Thesis. University of Malaya, Malaysia.

[37]

Souibgui E, Bruel C, Choquer M, de Vallée A, Dieryckx C, et al. 2021. Clathrin is important for virulence factors delivery in the necrotrophic fungus Botrytis cinerea. Frontiers in Plant Science 12:668937

doi: 10.3389/fpls.2021.668937
[38]

Bhandari DD, Ko DK, Kim SJ, Nomura K, He SY, et al. 2023. Defense against phytopathogens relies on efficient antimicrobial protein secretion mediated by the microtubule-binding protein TGNap1. Nature Communications 14(1):6357

doi: 10.1038/s41467-023-41807-4
[39]

Kimura S, Vaattovaara A, Ohshita T, Yokoyama K, Yoshida K, et al. 2023. Zinc deficiency-induced defensin-like proteins are involved in the inhibition of root growth in Arabidopsis. The Plant Journal 115:1071−83

doi: 10.1111/tpj.16281
[40]

Ma X, Yang N, Mao R, Hao Y, Yan X, et al. 2021. The pharmacodynamics study of insect defensin DLP4 against toxigenic Staphylococcus hyicus ACCC 61734 in vitro and vivo. Frontiers in Cellular and Infection Microbiology 11:638598

doi: 10.3389/fcimb.2021.638598
[41]

Zhu L, Qian N, Sun Y, Lu X, Duan H, et al. 2021. Pseudomonas fluorescens DN16 enhances cucumber defense responses against the necrotrophic pathogen Botrytis cinerea by regulating thermospermine catabolism. Frontiers in Plant Science 12:645338

doi: 10.3389/fpls.2021.645338
[42]

Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology 43:205−27

doi: 10.1146/annurev.phyto.43.040204.135923
[43]

Zhang H, Tang C, Jiao H, Qian M, Liu X, et al. 2020. Identification and expression analysis of pear DEFL gene family. Journal of Nanjing Agricultural University 43(1):33−46

doi: 10.7685/jnau.201903042
[44]

Thomson G, Dickinson L, Jacob Y. 2024. Genomic consequences associated with Agrobacterium-mediated transformation of plants. The Plant Journal 117:342−63

doi: 10.1111/tpj.16496