[1]

Adamik L, Langin T, Bonhomme L. 2023. A generic part of specific combined responses to biotic and abiotic stresses in crops: overcoming multifaceted challenges towards new opportunities. Frontiers in Plant Science 14:1140808

doi: 10.3389/fpls.2023.1140808
[2]

Thiruvengadam R, Venkidasamy B, Easwaran M, Chi HY, Thiruvengadam M, et al. 2024. Dynamic interplay of reactive oxygen and nitrogen species (ROS and RNS) in plant resilience: unveiling the signaling pathways and metabolic responses to biotic and abiotic stresses. Plant Cell Reports 43:198

doi: 10.1007/s00299-024-03281-0
[3]

Lee J, Nguyen HH, Park Y, Lin J, Hwang I. 2022. Spatial regulation of RBOHD via AtECA4-mediated recycling and clathrin-mediated endocytosis contributes to ROS accumulation during salt stress response but not flg22-induced immune response. The Plant Journal 109:816−30

doi: 10.1111/tpj.15593
[4]

Hino Y, Inada T, Yoshioka M, Yoshioka H. 2024. NADPH oxidase-mediated sulfenylation of cysteine derivatives regulates plant immunity. Journal of Experimental Botany 75:4641−54

doi: 10.1093/jxb/erae111
[5]

Wu B, Qi F, Liang Y. 2023. Fuels for ROS signaling in plant immunity. Trends in Plant Science 28:1124−31

doi: 10.1016/j.tplants.2023.04.007
[6]

Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. 2021. NADPH oxidases (NOX): an overview from discovery, molecular mechanisms to physiology and pathology. Antioxidants 10:890

doi: 10.3390/antiox10060890
[7]

Hu CH, Wang PQ, Zhang PP, Nie XM, Li BB, et al. 2020. NADPH oxidases: the vital performers and center hubs during plant growth and signaling. Cells 9:437

doi: 10.3390/cells9020437
[8]

Huang A, Wang Y, Liu Y, Wang G, She X. 2020. Reactive oxygen species regulate auxin levels to mediate adventitious root induction in Arabidopsis hypocotyl cuttings. Journal of Integrative Plant Biology 62:912−26

doi: 10.1111/jipb.12870
[9]

Hafsi C, Collado-Arenal AM, Wang H, Sanz-Fernández M, Sahrawy M, et al. 2022. The role of NADPH oxidases in regulating leaf gas exchange and ion homeostasis in Arabidopsis plants under cadmium stress. Journal of Hazardous Materials 429:128217

doi: 10.1016/j.jhazmat.2022.128217
[10]

Martin RE, Postiglione AE, Muday GK. 2022. Reactive oxygen species function as signaling molecules in controlling plant development and hormonal responses. Current Opinion in Plant Biology 69:102293

doi: 10.1016/j.pbi.2022.102293
[11]

Niu J, Cao Y, Lin X, Leng Q, Yin J. 2018. Field and laboratory screening of anthurium cultivars for resistance to foliar bacterial blight and the induced activities of defence-related enzymes. Folia Horticulturae 30:129−37

doi: 10.2478/fhort-2018-0013
[12]

Huang W, Zhang Y, Zhou J, Wei F, Feng Z, et al. 2021. The respiratory burst oxidase homolog protein D (GhRbohD) positively regulates the cotton resistance to Verticillium dahliae. International Journal of Molecular Sciences 22:13041

doi: 10.3390/ijms222313041
[13]

Zhu Z, Cheng P, Li Y, Yan X, Chen H. 2024. Genome-wide identification and expression analysis of NADPH oxidase genes in response to biotic and abiotic stresses, and during alternating heteromorphic generations in Pyropia haitanensis. Algal Research 83:103696

doi: 10.1016/j.algal.2024.103696
[14]

Torres MA, Dangl JL, Jones JDG. 2002. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proceedings of the National Academy of Sciences of the United States of America 99:517−22

doi: 10.1073/pnas.012452499
[15]

Chapman J, Muhlemann JK, Gayomba SR, Muday GK. 2019. RBOH-dependent ROS synthesis and ROS scavenging by plant specialized metabolites to modulate plant development and stress responses. Chemical Research in Toxicology 32:370−96

doi: 10.1021/acs.chemrestox.9b00028
[16]

Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, et al. 2011. Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology 14:691−99

doi: 10.1016/j.pbi.2011.07.014
[17]

Liu Y, He C. 2016. Regulation of plant reactive oxygen species (ROS) in stress responses: learning from AtRBOHD. Plant Cell Reports 35:995−1007

doi: 10.1007/s00299-016-1950-x
[18]

Pogány M, von Rad U, Grün S, Dongó A, Pintye A, et al. 2009. Dual roles of reactive oxygen species and NADPH oxidase RBOHD in an Arabidopsis-Alternaria pathosystem. Plant Physiology 151:1459−75

doi: 10.1104/pp.109.141994
[19]

Rivas FJM, Fernie AR, Aarabi F. 2024. Roles and regulation of the RBOHD enzyme in initiating ROS-mediated systemic signaling during biotic and abiotic stress. Plant Stress 11:100327

doi: 10.1016/j.stress.2023.100327
[20]

Jones JDG, Staskawicz BJ, Dangl JL. 2024. The plant immune system: from discovery to deployment. Cell 187:2095−116

doi: 10.1016/j.cell.2024.03.045
[21]

Kadota Y, Shirasu K, Zipfel C. 2015. Regulation of the NADPH oxidase RBOHD during plant immunity. Plant and Cell Physiology 56:1472−80

doi: 10.1093/pcp/pcv063
[22]

Lozano-Durán R, Bourdais G, He SY, Robatzek S. 2014. The bacterial effector HopM1 suppresses PAMP-triggered oxidative burst and stomatal immunity. New Phytologist 202:259−269

doi: 10.1111/nph.12651
[23]

Monaghan J, Matschi S, Shorinola O, Rovenich H, Matei A, et al. 2014. The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. Cell Host & Microbe 16:605−15

doi: 10.1016/j.chom.2014.10.007
[24]

Nühse TS, Bottrill AR, Jones AME, Peck SC. 2007. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. The Plant Journal 51:931−40

doi: 10.1111/j.1365-313X.2007.03192.x
[25]

Zhang J, Shao F, Li Y, Cui H, Chen L, et al. 2007. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMP-induced immunity in plants. Cell Host & Microbe 1:175−85

doi: 10.1016/j.chom.2007.03.006
[26]

Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, et al. 2011. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiology 156:1364−74

doi: 10.1104/pp.111.175737
[27]

Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, et al. 2011. Callose deposition: a multifaceted plant defense response. Molecular Plant-Microbe Interactions 24:183−93

doi: 10.1094/MPMI-07-10-0149
[28]

Marino D, Dunand C, Puppo A, Pauly N. 2012. A burst of plant NADPH oxidases. Trends in Plant Science 17:9−15

doi: 10.1016/j.tplants.2011.10.001
[29]

Berrocal-Lobo M, Stone S, Yang X, Antico J, Callis J, et al. 2010. ATL9, a RING zinc finger protein with E3 ubiquitin ligase activity implicated in chitin- and NADPH oxidase-mediated defense responses. PLoS One 5:e14426

doi: 10.1371/journal.pone.0014426
[30]

Fagard M, Dellagi A, Roux C, Périno C, Rigault M, et al. 2007. Arabidopsis thaliana expresses multiple lines of defense to counterattack Erwinia chrysanthemi. Molecular Plant-Microbe Interactions 20:794−805

doi: 10.1094/MPMI-20-7-0794
[31]

Yao Y, He RJ, Xie QL, Zhao XH, Deng XM, et al. 2017. ETHYLENE RESPONSE FACTOR 74 (ERF74) plays an essential role in controlling a respiratory burst oxidase homolog D (RbohD)-dependent mechanism in response to different stresses in Arabidopsis. New Phytologist 213:1667−81

doi: 10.1111/nph.14278
[32]

Luo X, Dai Y, Zheng C, Yang Y, Chen W, et al. 2021. The ABI4-RbohD/VTC2 regulatory module promotes reactive oxygen species (ROS) accumulation to decrease seed germination under salinity stress. New Phytologist 229:950−62

doi: 10.1111/nph.16921
[33]

Liu Z, Guo C, Wu R, Hu Y, Zhou Y, et al. 2022. FLS2–RBOHD–PIF4 module regulates plant response to drought and salt stress. International Journal of Molecular Sciences 23:1080

doi: 10.3390/ijms23031080
[34]

Yu X, Liu Z, Qin A, Zhou Y, Zhao Z, et al. 2023. FLS2-RBOHD module regulates changes in the metabolome of Arabidopsis in response to abiotic stress. Plant-Environment Interactions 4:36−54

doi: 10.1002/pei3.10101
[35]

Cheng X, Li G, Manzoor MA, Wang H, Abdullah M, et al. 2019. In silico genome-wide analysis of respiratory burst oxidase homolog (RBOH) family genes in five fruit-producing trees, and potential functional analysis on lignification of stone cells in Chinese white pear. Cells 8:520

doi: 10.3390/cells8060520
[36]

Ryu H, Choi S, Cheng M, Koo BK, Kim EY, et al. 2025. Flagellin sensing, signaling, and immune responses in plants. Plant Communications 6:101383

doi: 10.1016/j.xplc.2025.101383
[37]

Mersmann S, Bourdais G, Rietz S, Robatzek S. 2010. Ethylene signaling regulates accumulation of the FLS2 receptor and is required for the oxidative burst contributing to plant immunity. Plant Physiology 154:391−400

doi: 10.1104/pp.110.154567
[38]

Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, et al. 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal 22:2623−33

doi: 10.1093/emboj/cdg277
[39]

Macho AP, Boutrot F, Rathjen JP, Zipfel C. 2012. ASPARTATE OXIDASE plays an important role in Arabidopsis stomatal immunity. Plant Physiology 159:1845−56

doi: 10.1104/pp.112.199810
[40]

Liang C, Zhang B, Zhou Y, Yin H, An B, et al. 2021. CgNPG1 as a novel pathogenic gene of Colletotrichum gloeosporioides from hevea brasiliensis in mycelial growth, conidiation, and the invasive structures development. Frontiers in Microbiology 12:629387

doi: 10.3389/fmicb.2021.629387
[41]

Junaidi, Nuringtyas TR, Clément-Vidal A, Flori A, Syafaah A, et al. 2022. Analysis of reduced and oxidized antioxidants in Hevea brasiliensis latex reveals new insights into the regulation of antioxidants in response to harvesting stress and tapping panel dryness. Heliyon 8:e098408

doi: 10.1016/j.heliyon.2022.e09840
[42]

Zhang Y, Leclercq J, Montoro P. 2017. Reactive oxygen species in Hevea brasiliensis latex and relevance to Tapping Panel Dryness. Tree Physiology 37:261−69

doi: 10.1093/treephys/tpw106
[43]

Wang J, Chen D, Hu H, Ma Y, Yang T, et al. 2025. Functional characterization of OsLT9 in regulating rice leaf thickness. Journal of Genetics and Genomics In Press, Journal Pre-proof

doi: 10.1016/j.jgg.2025.07.010
[44]

Zhang X, Wang L, He C, Luo H. 2016. An efficient transient mesophyll protoplast system for investigation of the innate immunity responses in the rubber tree (Hevea brasiliensis). Plant Cell, Tissue and Organ Culture (PCTOC) 126:281−90

doi: 10.1007/s11240-016-0997-2
[45]

Ren R, Gao J, Yin D, Li K, Lu C, et al. 2021. Highly efficient leaf base protoplast isolation and transient expression systems for orchids and other important monocot crops. Frontiers in Plant Science 12:626015

doi: 10.3389/fpls.2021.626015
[46]

Ma W, Yi F, Xiao Y, Yang G, Chen F, et al. 2020. Isolation of leaf mesophyll protoplasts optimized by orthogonal design for transient gene expression in Catalpa bungei. Scientia Horticulturae 274:109684

doi: 10.1016/j.scienta.2020.109684
[47]

Zeng X, Cao X, Zhao Q, Hou S, Hu X, et al. 2024. Isolation of haustorium protoplasts optimized by orthogonal design for transient gene expression in Phelipanche aegyptiaca. Plants 13:2163

doi: 10.3390/plants13152163
[48]

Chen K, Chen J, Pi X, Huang LJ, Li N. 2023. Isolation, purification, and application of protoplasts and transient expression systems in plants. International Journal of Molecular Sciences 24:16892

doi: 10.3390/ijms242316892
[49]

Yang J, Wang Q, Luo H, He C, An B. 2020. HbWRKY40 plays an important role in the regulation of pathogen resistance in Hevea brasiliensis. Plant Cell Reports 39:1095−107

doi: 10.1007/s00299-020-02551-x
[50]

Luan LL, Song YF, Hou XX, Chen JM. 2019. Establishment of somatic embryogenic callus suspension lines in Hevea brasiliensis and plant regeneration. Molecular Plant Breeding 17:2614−21

doi: 10.13271/j.mpb.017.002614
[51]

Guy E, Lautier M, Chabannes M, Roux B, Lauber E, et al. 2013. xopAC-triggered immunity against Xanthomonas depends on Arabidopsis receptor-like cytoplasmic kinase genes PBL2 and RIPK. PLoS One 8:e73469

doi: 10.1371/journal.pone.0073469
[52]

Mignolet-Spruyt L, Xu E, Idänheimo N, Hoeberichts FA, Mühlenbock P, et al. 2016. Spreading the news: subcellular and organellar reactive oxygen species production and signalling. Journal of Experimental Botany 67:3831−44

doi: 10.1093/jxb/erw080
[53]

Wojtaszek P. 1997. Oxidative burst: an early plant response to pathogen infection. Biochemical Journal 322:681−92

doi: 10.1042/bj3220681
[54]

Blomster T, Salojärvi J, Sipari N, Brosché M, Ahlfors R, et al. 2011. Apoplastic reactive oxygen species transiently decrease auxin signaling and cause stress-induced morphogenic response in Arabidopsis. Plant Physiology 157:1866−83

doi: 10.1104/pp.111.181883
[55]

Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH. 2013. Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environmental and Experimental Botany 94:73−88

doi: 10.1016/j.envexpbot.2012.05.003
[56]

Chakraborty R, Rehman RU, Siddiqui MW, Liu H, Seth CS. 2025. Phytohormones: heart of plants' signaling network under biotic, abiotic, and climate change stresses. Plant Physiology and Biochemistry 223:109839

doi: 10.1016/j.plaphy.2025.109839
[57]

Zhu C, Schraut D, Hartung W, Schäffner AR. 2005. Differential responses of maize MIP genes to salt stress and ABA. Journal of Experimental Botany 56:2971−81

doi: 10.1093/jxb/eri294
[58]

Shu K, Qi Y, Chen F, Meng Y, Luo X, et al. 2017. Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Frontiers in Plant Science 8:1372

doi: 10.3389/fpls.2017.01372
[59]

Mahajan M, Poor P, Kaur H, Aher RR, Palakolanu SR, et al. 2025. Salt stress tolerance and abscisic acid in plants: associating role of plant growth regulators and transcription factors. Plant Physiology and Biochemistry 228:110303

doi: 10.1016/j.plaphy.2025.110303