[1]

Seleiman MF, Al-Suhaibani N, Ali N, Akmal M, Alotaibi M, et al. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10:259

doi: 10.3390/plants10020259
[2]

Lamers J, van der Meer T, Testerink C. 2020. How plants sense and respond to stressful environments. Plant Physiology 182:1624−35

doi: 10.1104/pp.19.01464
[3]

Conde A, Chaves MM, Gerós H. 2011. Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant and Cell Physiology 52:1583−602

doi: 10.1093/pcp/pcr107
[4]

Zhang H, Zhao Y, Zhu JK. 2020. Thriving under stress: how plants balance growth and the stress response. Developmental Cell 55:529−43

doi: 10.1016/j.devcel.2020.10.012
[5]

Liu F, Xi M, Liu T, Wu X, Ju L, et al. 2024. The central role of transcription factors in bridging biotic and abiotic stress responses for plants' resilience. New Crops 1:100005

doi: 10.1016/j.ncrops.2023.11.003
[6]

Baillo EH, Kimotho RN, Zhang Z, Xu P. 2019. Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10:771

doi: 10.3390/genes10100771
[7]

Diao P, Chen C, Zhang Y, Meng Q, Lv W, et al. 2020. The role of NAC transcription factor in plant cold response. Plant Signaling & Behavior 15:1785668

doi: 10.1080/15592324.2020.1785668
[8]

Fang Y, Liao K, Du H, Xu Y, Song H, et al. 2015. A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice. Journal of Experimental Botany 66:6803−17

doi: 10.1093/jxb/erv386
[9]

Franco-Zorrilla JM, López-Vidriero I, Carrasco JL, Godoy M, Vera P, et al. 2014. DNA-binding specificities of plant transcription factors and their potential to define target genes. Proceedings of the National Academy of Sciences 111:2367−72

doi: 10.1073/pnas.1316278111
[10]

Kelemen Z, Sebastian A, Xu W, Grain D, Salsac F, et al. 2015. Analysis of the DNA-binding activities of the Arabidopsis R2R3-MYB transcription factor family by one-hybrid experiments in yeast. PLoS One 10:e0141044

doi: 10.1371/journal.pone.0141044
[11]

López-Vidriero I, Godoy M, Grau J, Peñuelas M, Solano R, et al. 2021. DNA features beyond the transcription factor binding site specify target recognition by plant MYC2-related bHLH proteins. Plant Communications 2:100232

doi: 10.1016/j.xplc.2021.100232
[12]

Feller A, Machemer K, Braun EL, Grotewold E. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal 66:94−116

doi: 10.1111/j.1365-313X.2010.04459.x
[13]

Radani Y, Li R, Korboe HM, Ma H, Yang L. 2023. Transcriptional and post-translational regulation of plant bHLH transcription factors during the response to environmental stresses. Plants 12:2113

doi: 10.3390/plants12112113
[14]

Shinozaki K, Yamaguchi-Shinozaki K. 2022. Functional genomics in plant abiotic stress responses and tolerance: From gene discovery to complex regulatory networks and their application in breeding. Proceedings of the Japan Academy, Series B 98:470−92

doi: 10.2183/pjab.98.024
[15]

Gao Z, Sun W, Wang J, Zhao C, Zuo K. 2019. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers. Plant Science 286:7−16

doi: 10.1016/j.plantsci.2019.05.020
[16]

Wu H, Ye H, Yao R, Zhang T, Xiong L. 2015. OsJAZ9 acts as a transcriptional regulator in jasmonate signaling and modulates salt stress tolerance in rice. Plant Science 232:1−12

doi: 10.1016/j.plantsci.2014.12.010
[17]

Geng J, Liu JH. 2018. The transcription factor CsbHLH18 of sweet orange functions in modulation of cold tolerance and homeostasis of reactive oxygen species by regulating the antioxidant gene. Journal of Experimental Botany 69:2677−92

doi: 10.1093/jxb/ery065
[18]

Niu X, Guan Y, Chen S, Li H. 2017. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Brachypodium distachyon. BMC Genomics 18:619

doi: 10.1186/s12864-017-4044-4
[19]

Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, et al. 2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology 153:1398−412

doi: 10.1104/pp.110.153593
[20]

Riechmann L, Muyldermans S. 1999. Single domain antibodies: comparison of camel VH and camelised human VH domains. Journal of Immunological Methods 231:25−38

doi: 10.1016/S0022-1759(99)00138-6
[21]

Li C, Yan C, Sun Q, Wang J, Yuan C, et al. 2021. The bHLH transcription factor AhbHLH112 improves the drought tolerance of peanut. BMC Plant Biology 21:540

doi: 10.1186/s12870-021-03318-6
[22]

Sharma P, Sharma MMM, Patra A, Vashisth M, Mehta S, et al. 2020. Chapter 9−The role of key transcription factors for cold tolerance in plants. In Transcription Factors for Abiotic Stress Tolerance in Plants, ed. Wani SH. Amsterdam: Elsevier. pp. 123−52 doi: 10.1016/b978-0-12-819334-1.00009-5

[23]

Zhang M, Gao JY, Dong SC, Chang MH, Zhu JX, et al. 2024. Alfalfa MsbHLH115 confers tolerance to cadmium stress through activating the iron deficiency response in Arabidopsis thaliana. Frontiers in Plant Science 15:1358673

doi: 10.3389/fpls.2024.1358673
[24]

Jiang Y, Yang B, Deyholos MK. 2009. Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Molecular Genetics and Genomics 282:503−16

doi: 10.1007/s00438-009-0481-3
[25]

An F, Xiao X, Chen T, Xue J, Luo X, et al. 2022. Systematic analysis of bHLH transcription factors in cassava uncovers their roles in postharvest physiological deterioration and cyanogenic glycosides biosynthesis. Frontiers in Plant Science 13:901128

doi: 10.3389/fpls.2022.901128
[26]

Qian Y, Zhang T, Yu Y, Gou L, Yang J, et al. 2021. Regulatory mechanisms of bHLH transcription factors in plant adaptive responses to various abiotic stresses. Frontiers in Plant Science 12:677611

doi: 10.3389/fpls.2021.677611
[27]

Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15:1749−70

doi: 10.1105/tpc.013839
[28]

Wang L, Xiang L, Hong J, Xie Z, Li B. 2019. Genome-wide analysis of bHLH transcription factor family reveals their involvement in biotic and abiotic stress responses in wheat (Triticum aestivum L.). 3 Biotech 9:236

doi: 10.1007/s13205-019-1742-4
[29]

Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, et al. 2006. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Current Opinion in Plant Biology 9:436−42

doi: 10.1016/j.pbi.2006.05.014
[30]

Meng F, Yang C, Cao J, Chen H, Pang J, et al. 2020. A bHLH transcription activator regulates defense signaling by nucleo-cytosolic trafficking in rice. Journal of Integrative Plant Biology 62:1552−73

doi: 10.1111/jipb.12922
[31]

Khan I, Asaf S, Jan R, Bilal S, Lubna, et al. 2023. Genome-wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato (Solanum lycopersicum L.). Frontiers in Plant Science 14:1100895

doi: 10.3389/fpls.2023.1100895
[32]

Quan X, Meng C, Zhang N, Liang X, Li J, et al. 2023. Genome-wide analysis of barley bHLH transcription factors and the functional characterization of HvbHLH56 in low nitrogen tolerance in Arabidopsis. International Journal of Molecular Sciences 24:9740

doi: 10.3390/ijms24119740
[33]

Guo J, Sun B, He H, Zhang Y, Tian H, et al. 2021. Current understanding of bHLH transcription factors in plant abiotic stress tolerance. International Journal of Molecular Sciences 22:4921

doi: 10.3390/ijms22094921
[34]

McKown KH, Bergmann DC. 2020. Stomatal development in the grasses: lessons from models and crops (and crop models). New Phytologist 227:1636−48

doi: 10.1111/nph.16450
[35]

Soltani Z, Moghadam A, Tahmasebi A, Niazi A. 2023. Integrative systems biology analysis of barley transcriptome─hormonal signaling against biotic stress. PLoS One 18:e0281470

doi: 10.1371/journal.pone.0281470
[36]

Gao Q, Song W, Li X, Xiang C, Chen G, et al. 2022. Genome-wide identification of bHLH transcription factors: Discovery of a candidate regulator related to flavonoid biosynthesis in Erigeron Breviscapus. Frontiers in Plant Science 13:977649

doi: 10.3389/fpls.2022.977649
[37]

Xu L, Lan Y, Lin M, Zhou H, Ying S, et al. 2024. Genome-wide identification and transcriptional analysis of AP2/ERF gene family in pearl millet (Pennisetum glaucum). International Journal of Molecular Sciences 25:2470

doi: 10.3390/ijms25052470
[38]

Hanna WW, Baltensperger DD, Seetharam A . 2004 . Pearl millet and other millets . In Warm‐season (C4) Grasses, eds. Moser LE, Burson BL, Sollenberger LE. Volume 45. Madison, WI, USA: American Society of Agronomy, Crop Science Society of America, Soil Science Society of America. pp 537−60 doi: 10.2134/agronmonogr45.c15

[39]

Riahi L, Ben-Romdhane M, Masmoudi AS. 2024. Industrial interests and requirements for improvement of pearl millet, a gluten-free and climate-smart underutilized cereal. Journal of Plant Biotechnology 51:77−88

doi: 10.5010/jpb.2024.51.009.077
[40]

Srivastava RK, Singh RB, Pujarula VL, Bollam S, Pusuluri M, et al. 2020. Genome-wide association studies and genomic selection in pearl millet: advances and prospects. Frontiers in Genetics 10:1389

doi: 10.3389/fgene.2019.01389
[41]

Kumar B, Kumar A, Jaiswal S, Iquebal MA, Angadi UB, et al. 2022. Genome-wide identification of long non-coding RNAs in pearl millet (Pennisetum glaucum (L.)) genotype subjected to drought stress. Agronomy 12:1976

doi: 10.3390/agronomy12081976
[42]

Kandarkar K, Palaniappan V, Satpathy S, Vemula A, Rajasekaran R, et al. 2024. Understanding genetic diversity in drought-adaptive hybrid parental lines in pearl millet. PLoS One 19:e0298636

doi: 10.1371/journal.pone.0298636
[43]

Yan H, Sun M, Zhang Z, Jin Y, Zhang A, et al. 2023. Pangenomic analysis identifies structural variation associated with heat tolerance in pearl millet. Nature Genetics 55:507−18

doi: 10.1038/s41588-023-01302-4
[44]

Dussert Y, Snirc A, Robert T. 2015. Inference of domestication history and differentiation between early-and late-flowering varieties in pearl millet. Molecular Ecology 24:1387−402

doi: 10.1111/mec.13119
[45]

Bani Hani N, Aukour FJ, Al-Qinna MI. 2022. Investigating the pearl millet (Pennisetum glaucum) as a climate-smart drought-tolerant crop under Jordanian arid environments. Sustainability 14:12249

doi: 10.3390/su141912249
[46]

Azare IM, Dantata IJ, Abdullahi MS, Adebayo AA, Aliyu M. 2020. Effects of climate change on pearl millet (Pennisetum glaucum [L. R. Br.]) production in Nigeria. Journal of Applied Sciences and Environmental Management 24:157−62

doi: 10.4314/jasem.v24i1.23
[47]

Serba DD, Yadav RS, Varshney RK, Gupta S, Mahalingam G, et al. 2020. Genomic designing of pearl millet: a resilient crop for arid and semi-arid environments. In Genomic designing of climate-smart cereal crops, ed. Kole C. Cham: Springer. pp. 221−86 doi: 10.1007/978-3-319-93381-8_6

[48]

Singh P, Boote KJ, Kadiyala MDM, Nedumaran S, Gupta SK, et al. 2017. An assessment of yield gains under climate change due to genetic modification of pearl millet. Science of The Total Environment 601:1226−37

doi: 10.1016/j.scitotenv.2017.06.002
[49]

Bisht A, Kumar A, Gautam RD, Arya RK. 2019. Breeding of pearl millet (Pennisetum glaucum (L.) R. Br. ). In Advances in Plant Breeding Strategies: Cereals, eds. Al-Khayri JM, Jain SM, Johnson DV. Cham: Springer. pp.165−221 doi: 10.1007/978-3-030-23108-8_5

[50]

Yan H, Jin Y, Yu H, Wang C, Wu B, et al. 2024. Genomic selection for agronomical phenotypes using genome-wide SNPs and SVs in pearl millet. Theoretical and Applied Genetics 137:244

doi: 10.1007/s00122-024-04754-2
[51]

Jin Y, Yan H, Zhu X, Yang Y, Jia J, et al. 2025. Single-cell transcriptomes reveal spatiotemporal heat stress response in pearl millet leaves. New Phytologist 247:637−50

doi: 10.1111/nph.70232
[52]

Dudhate A, Shinde H, Yu P, Tsugama D, Gupta SK, et al. 2021. Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum). BMC Genomics 22:70

doi: 10.1186/s12864-021-07382-y
[53]

Chanwala J, Khadanga B, Jha DK, Sandeep IS, Dey N. 2023. MYB transcription factor family in pearl millet: genome-wide identification, evolutionary progression and expression analysis under abiotic stress and phytohormone treatments. Plants 12:355

doi: 10.3390/plants12020355
[54]

Chanwala J, Jha DK, Sandeep IS, Dey N. 2022. The role of transcription factors in response to biotic stresses in pearl millet. In Transcription factors for biotic stress tolerance in plants, eds. Wani SH, Nataraj V, Singh GP. Cham: Springer. pp.195−211 doi: 10.1007/978-3-031-12990-2_10

[55]

Jha DK, Chanwala J, Barla P, Dey N. 2024. 'Genome-wide identification of bZIP gene family in Pearl millet and transcriptional profiling under abiotic stress, phytohormonal treatments; and functional characterization of PgbZIP9'. Frontiers in Plant Science 15:1352040

doi: 10.3389/fpls.2024.1352040
[56]

Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, et al. 2003. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. The Plant Cell 15:2497−502

doi: 10.1105/tpc.151140
[57]

Li X, Duan X, Jiang H, Sun Y, Tang Y, et al. 2006. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiology 141:1167−84

doi: 10.1104/pp.106.080580
[58]

Kavas M, Baloğlu MC, Atabay ES, Ziplar UT, Daşgan HY, et al. 2016. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. Molecular Genetics and Genomics 291:129−43

doi: 10.1007/s00438-015-1095-6
[59]

Wang R, Zhao P, Kong N, Lu R, Pei Y, et al. 2018. Genome-wide identification and characterization of the potato bHLH transcription factor family. Genes 9:54

doi: 10.3390/genes9010054
[60]

Mao K, Dong Q, Li C, Liu C, Ma F. 2017. Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Frontiers in Plant Science 8:480

doi: 10.3389/fpls.2017.00480
[61]

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. 2014. Pfam: the protein families database. Nucleic Acids Research 42:D222−D230

doi: 10.1093/nar/gkt1223
[62]

Sun M, Yan H, Zhang A, Jin Y, Lin C, et al. 2023. Milletdb: a multi-omics database to accelerate the research of functional genomics and molecular breeding of millets. Plant Biotechnology Journal 21:2348−57

doi: 10.1111/pbi.14136
[63]

Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, et al. 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Research 40:W597−W603

doi: 10.1093/nar/gks400
[64]

Hu B, Jin J, Guo AY, Zhang H, Luo J, et al. 2015. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296−97

doi: 10.1093/bioinformatics/btu817
[65]

Thompson JD, Gibson TJ, Higgins DG. 2002. Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics

doi: 10.1002/0471250953.bi0203s00
[66]

Pontius JU, Wagner L, Schuler GD. 2003. 21. UniGene: a unified view of the transcriptome. The NCBI Handbook. Bethesda, MD: National Library of Medicine (US), NCBI. www.icgeb.res.in/whotdr/cd1/PreCourseReading/NCBI_Handbook2/ch21d1.pdf

[67]

Bailey TL, Johnson J, Grant CE, Noble WS. 2015. The MEME suite. Nucleic Acids Research 43:W39−W49

doi: 10.1093/nar/gkv416
[68]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13:1194−202

doi: 10.1016/j.molp.2020.06.009
[69]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[70]

Sievers F, Higgins DG. 2014. Clustal omega. Current Protocols in Bioinformatics

doi: 10.1002/0471250953.bi0313s48
[71]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[72]

Hendriks KP, Kiefer C, Al-Shehbaz IA, Bailey CD, Hooft van Huysduynen A, et al. 2023. Global Brassicaceae phylogeny based on filtering of 1, 000-gene dataset. Current Biology 33:4052−4068.e6

doi: 10.1016/j.cub.2023.08.026
[73]

Sanjana Reddy P. 2017. Pearl Millet, Pennisetum glaucum (L.) R. Br. In Millets and Sorghum: Biology and Genetic Improvement, ed. Patil V. Hoboken, NJ, USA: Wiley. pp. 49−86 doi: 10.1002/9781119130765.ch2

[74]

Hao Y, Zong X, Ren P, Qian Y, Fu A. 2021. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences 22:7152

doi: 10.3390/ijms22137152
[75]

Gao C, Sun J, Wang C, Dong Y, Xiao S, et al. 2017. Genome-wide analysis of basic/helix-loop-helix gene family in peanut and assessment of its roles in pod development. PLoS One 12:e0181843

doi: 10.1371/journal.pone.0181843
[76]

Sun H, Fan HJ, Ling HQ. 2015. Genome-wide identification and characterization of the bHLH gene family in tomato. BMC Genomics 16:9

doi: 10.1186/s12864-014-1209-2
[77]

Song XM, Huang ZN, Duan WK, Ren J, Liu TK, et al. 2014. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Molecular Genetics and Genomics 289:77−91

doi: 10.1007/s00438-013-0791-3
[78]

Wei K, Chen H. 2018. Comparative functional genomics analysis of bHLH gene family in rice, maize and wheat. BMC Plant Biology 18:309

doi: 10.1186/s12870-018-1529-5
[79]

Hong Y, Ahmad N, Tian Y, Liu J, Wang L, et al. 2019. Genome-wide identification, expression analysis, and subcellular localization of Carthamus tinctorius bHLH transcription factors. International Journal of Molecular Sciences 20:3044

doi: 10.3390/ijms20123044
[80]

Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, et al. 2000. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105−10

doi: 10.1126/science.290.5499.2105
[81]

Henriksson M, Lüscher B. 1996. Proteins of the myc network: essential regulators of cell growth and differentiation. Advances in Cancer Research 68:109−82

doi: 10.1016/S0065-230X(08)60353-X
[82]

Chen X, Yao C, Liu J, Liu J, Fang J, et al. 2024. Basic helix-loop-helix (bHLH) gene family in rye (Secale cereale L. ): genome-wide identification, phylogeny, evolutionary expansion and expression analyses. BMC Genomics 25:67

doi: 10.1186/s12864-023-09911-3
[83]

Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, et al. 2003. The evolution of transcriptional regulation in eukaryotes. Molecular biology and evolution 20:1377−419

doi: 10.1093/molbev/msg140
[84]

Roy SW. 2003. Recent evidence for the exon theory of genes. Genetica 118:251−66

doi: 10.1023/A:1024190617462
[85]

Rinerson CI, Rabara RC, Tripathi P, Shen QJ, Rushton PJ. 2015. The evolution of WRKY transcription factors. BMC Plant Biology 15:66

doi: 10.1186/s12870-015-0456-y
[86]

Wang Z, Yuan Y, Rehman F, Wang X, Wu T, et al. 2024. Genome-wide identification and characterization of bHLH gene family in Hevea brasiliensis. Forests 15:2027

doi: 10.3390/f15112027
[87]

Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate genes. Science 290:1151−55

doi: 10.1126/science.290.5494.1151
[88]

Zhou X, Liao Y, Kim SU, Chen Z, Nie G, et al. 2020. Genome-wide identification and characterization of bHLH family genes from Ginkgo biloba. Scientific Reports 10:13723

doi: 10.1038/s41598-020-69305-3
[89]

Qin Y, Li J, Chen J, Yao S, Li L, et al. 2024. Genome-wide characterization of the bHLH gene family in Gynostemma pentaphyllum reveals its potential role in the regulation of gypenoside biosynthesis. BMC Plant Biology 24:205

doi: 10.1186/s12870-024-04879-y
[90]

Shen W, Cui X, Li H, Teng RM, Wang YX, et al. 2019. Genome-wide identification and analyses of bHLH family genes in Brassica napus. Canadian Journal of Plant Science 99:589−98

doi: 10.1139/cjps-2018-0230
[91]

Liu JH, Peng T, Dai W. 2014. Critical cis-acting elements and interacting transcription factors: key players associated with abiotic stress responses in plants. Plant Molecular Biology Reporter 32:303−17

doi: 10.1007/s11105-013-0667-z
[92]

Zhu Z, Wang H, Wang Y, Guan S, Wang F, et al. 2015. Characterization of the cis elements in the proximal promoter regions of the anthocyanin pathway genes reveals a common regulatory logic that governs pathway regulation. Journal of Experimental Botany 66:3775−89

doi: 10.1093/jxb/erv173
[93]

Ho CL, Geisler M. 2019. Genome-wide computational identification of biologically significant cis-regulatory elements and associated transcription factors from rice. Plants 8:441

doi: 10.3390/plants8110441
[94]

Mweru MR. 2022. Performance and nutritional assessment of transgenic tropical maize (zea mays L.) harbouring isopentenyl transferase gene under drought stress. Master Thesis. Kenyatta University, Kenya. http://ir-library.ku.ac.ke/handle/123456789/24870

[95]

Rout GR, Jadhao KR, Panda S, Swain R. 2023. Approaches in stress mitigation of plants. In Plant stress mitigators, eds. Ghorbanpour M, Shahid MA. Amsterdam: Elsevier. pp. 1−25 doi: 10.1016/b978-0-323-89871-3.00003-3

[96]

Singh AP, Mani B, Giri J. 2021. OsJAZ9 is involved in water-deficit stress tolerance by regulating leaf width and stomatal density in rice. Plant Physiology and Biochemistry 162:161−70

doi: 10.1016/j.plaphy.2021.02.042
[97]

Robson F, Okamoto H, Patrick E, Harris SR, Wasternack C, et al. 2010. Jasmonate and phytochrome A signaling in Arabidopsis wound and shade responses are integrated through JAZ1 stability. The Plant Cell 22:1143−60

doi: 10.1105/tpc.109.067728
[98]

Yu Q, Hua X, Yao H, Zhang Q, He J, et al. 2021. Abscisic acid receptors are involves in the Jasmonate signaling in Arabidopsis. Plant Signaling & Behavior 16:1948243

doi: 10.1080/15592324.2021.1948243
[99]

Cannon SB, Mitra A, Baumgarten A, Young ND, May G. 2004. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biology 4:10

doi: 10.1186/1471-2229-4-10
[100]

Feng G, Burleigh JG, Braun EL, Mei W, Barbazuk WB. 2017. Evolution of the 3R-MYB gene family in plants. Genome Biology and Evolution 9:1013−29

doi: 10.1093/gbe/evx056
[101]

Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, et al. 2009. Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. The Plant Cell 21:3767−80

doi: 10.1105/tpc.109.070441
[102]

Chen S, Yang W, Jia Q, Wang W, Zhang N, et al. 2017. Pleurotus ostreatus bHLH transcription factors regulate plant growth and development when expressed in Arabidopsis. Journal of Plant Interactions 12:542−49

doi: 10.1080/17429145.2017.1400124
[103]

Hao Y, Oh E, Choi G, Liang Z, Wang ZY. 2012. Interactions between HLH and bHLH factors modulate light-regulated plant development. Molecular Plant 5:688−97

doi: 10.1093/mp/sss011
[104]

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:3389−402

doi: 10.1093/nar/25.17.3389
[105]

Fan Y, Lai D, Yang H, Xue G, He A, et al. 2021. Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in foxtail millet (Setaria italica L. ). BMC genomics 22:778

doi: 10.1186/s12864-021-08095-y
[106]

Wu X, Shiroto Y, Kishitani S, Ito Y, Toriyama K. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports 28:21−30

doi: 10.1007/s00299-008-0614-x
[107]

Jiang J, Ma S, Ye N, Jiang M, Cao J, et al. 2017. WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology 59:86−101

doi: 10.1111/jipb.12513