[1]

Wasternack C, Hause B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany 111:1021−58

doi: 10.1093/aob/mct067
[2]

Chini A, Fonseca S, Fernández G, Adie B, Chico JM, et al. 2007. The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448(7154):666−71

doi: 10.1038/nature06006
[3]

Thines B, Katsir L, Melotto M, Niu Y, Mandaokar A, et al. 2007. JAZ repressor proteins are targets of the SCFCOI1 complex during jasmonate signalling. Nature 448(7154):661−65

doi: 10.1038/nature05960
[4]

Das S, Goswami M, Yadav RNS, Baruah AM, Bandyopadhyay T. 2024. Methyl jasmonate alters expression of enzymes and metabolites of terpenoid biosynthesis in tea cell culture. Plant Cell, Tissue and Organ Culture (PCTOC) 159:25

doi: 10.1007/s11240-024-02881-8
[5]

Song H, Duan Z, Wang Z, Li Y, Wang Y, et al. 2022. Genome-wide identification, expression pattern and subcellular localization analysis of the JAZ gene family in Toona ciliata. Industrial Crops and Products 178:114582

doi: 10.1016/j.indcrop.2022.114582
[6]

Ju L, Jing Y, Shi P, Liu J, Chen J, et al. 2019. JAZ proteins modulate seed germination through interaction with ABI5 in bread wheat and Arabidopsis. New Phytologist 223(1):246−60

doi: 10.1111/nph.15757
[7]

Vanholme B, Grunewald W, Bateman A, Kohchi T, Gheysen G. 2007. The tify family previously known as ZIM. Trends in Plant Science 12(6):239−44

doi: 10.1016/j.tplants.2007.04.004
[8]

Yan Y, Stolz S, Chételat A, Reymond P, Pagni M, et al. 2007. A downstream mediator in the growth repression limb of the jasmonate pathway. The Plant Cell 19(8):2470−83

doi: 10.1105/tpc.107.050708
[9]

Sheard LB, Tan X, Mao H, Withers J, Ben-Nissan G, et al. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1–JAZ co-receptor. Nature 468(7322):400−5

doi: 10.1038/nature09430
[10]

Zhou SL, Zhang JX, Jiang S, Lu Y, Huang YS, et al. 2024. Genome-wide identification of JAZ gene family in sugarcane and function analysis of ScJAZ1/2 in drought stress response and flowering regulation. Plant Physiology and B iochemistry 210:108577

doi: 10.1016/j.plaphy.2024.108577
[11]

Geerinck J, Pauwels L, De Jaeger G, Goossens A. 2010. Dissection of the one-MegaDalton JAZ1 protein complex. Plant Signaling & Behavior 5(8):1039−41

doi: 10.4161/psb.5.8.12338
[12]

Chen S, Wang P, Kong W, Chai K, Zhang S, et al. 2023. Gene mining and genomics-assisted breeding empowered by the pangenome of tea plant. Camellia sinensis. Nature Plants 9:1986−99

doi: 10.1038/s41477-023-01565-z
[13]

Xia EH, Zhang HB, Sheng J, Li K, Zhang QJ, et al. 2017. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis. Molecular Plant 10(6):866−77

doi: 10.1016/j.molp.2017.04.002
[14]

Shen J, Zou Z, Xing H, Duan Y, Zhu X, et al. 2020. Genome-wide analysis reveals stress and hormone responsive patterns of JAZ family genes in Camellia Sinensis. International Journal of Molecular Sciences 21(7):2433

doi: 10.3390/ijms21072433
[15]

Shen Y, Wang J, Si X, Liang X, Zheng Z, et al. 2025. Revealing the molecular mechanism of biosynthesis and transcriptional regulation of PAs, caffeine and linalool globally under simulative stress in coffee plants. International Journal of Biological Macromolecules 310:143103

doi: 10.1016/j.ijbiomac.2025.143103
[16]

Li C, Xu M, Cai X, Han Z, Si J, et al. 2022. Jasmonate signaling pathway modulates plant defense, growth, and their trade-offs. International Journal of Molecular Sciences 23(7):3945

doi: 10.3390/ijms23073945
[17]

Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, et al. 2014. Pfam: the protein families database. Nucleic Acids Research 42(D1):D222−D230

doi: 10.1093/nar/gkt1223
[18]

Johnson LS, Eddy SR, Portugaly E. 2010. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11:431

doi: 10.1186/1471-2105-11-431
[19]

Sun Y, Xiao W, Wang QN, Wang J, Kong XD, et al. 2023. Multiple variation patterns of terpene synthases in 26 maize genomes. BMC Genomics 24(1):46

doi: 10.1186/s12864-023-09137-3
[20]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[21]

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312−13

doi: 10.1093/bioinformatics/btu033
[22]

Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Research 44(W1):W242−W245

doi: 10.1093/nar/gkw290
[23]

Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847−49

doi: 10.1093/bioinformatics/btw313
[24]

Zwaenepoel A, Van de Peer Y. 2019. wgd—simple command line tools for the analysis of ancient whole-genome duplications. Bioinformatics 35(12):2153−55

doi: 10.1093/bioinformatics/bty915
[25]

Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, et al. 2020. TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular Plant 13(8):1194−202

doi: 10.1016/j.molp.2020.06.009
[26]

Bailey TL, Boden M, Buske FA, Frith M, Grant CE, et al. 2009. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Research 37:W202−W208

doi: 10.1093/nar/gkp335
[27]

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596(7873):583−89

doi: 10.1038/s41586-021-03819-2
[28]

Xuan X, Su S, Tan J, Guo H, Jiao Y, et al. 2024. Genome-wide identification, characterization, and expression pattern analysis of the JAZ gene family in Moso bamboo during rapid shoot development. Advances in Bamboo Science 7:100083

doi: 10.1016/j.bamboo.2024.100083
[29]

Huang H, Gao H, Liu B, Qi T, Tong J, et al. 2017. Arabidopsis MYB24 regulates jasmonate-mediated stamen development. Frontiers in Plant Science 8:1525

doi: 10.3389/fpls.2017.01525
[30]

Navarro A, Barton NH. 2003. Chromosomal speciation and molecular divergence—accelerated evolution in rearranged chromosomes. Science 300(5617):321−24

doi: 10.1126/science.1080600
[31]

Kazan K, Manners JM. 2012. JAZ repressors and the orchestration of phytohormone crosstalk. Trends in Plant Science 17(1):22−31

doi: 10.1016/j.tplants.2011.10.006
[32]

de los Angeles Miccono M, Yang HW, DeMott L, Melotto M. 2023. Review: losing JAZ4 for growth and defense. Plant Science 335:111816

doi: 10.1016/j.plantsci.2023.111816
[33]

Han X, Kui M, He K, Yang M, Du J, et al. 2023. Jasmonate-regulated root growth inhibition and root hair elongation. Journal of Experimental Botany 74(4):1176−85

doi: 10.1093/jxb/erac441
[34]

Zheng Y, Chen X, Wang P, Sun Y, Yue C, et al. 2020. Genome-wide and expression pattern analysis of JAZ family involved in stress responses and postharvest processing treatments in Camellia sinensis. Scientific Reports 10(1):2792

doi: 10.1038/s41598-020-59675-z
[35]

Tong C, Jia Y, Hu H, Zeng Z, Chapman B, et al. 2025. Pangenome and pantranscriptome as the new reference for gene-family characterization: a case study of basic helix-loop-helix (bHLH) genes in barley. Plant Communications 6(1):101190

doi: 10.1016/j.xplc.2024.101190
[36]

Schön A, Krupp G, Gough S, Berry-Lowe S, Kannangara CG, et al. 1986. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature 322(6076):281−84

doi: 10.1038/322281a0
[37]

Wei K, Wang L, Zhang Y, Ruan L, Li H, et al. 2019. A coupled role for CsMYB75 and CsGSTF1 in anthocyanin hyperaccumulation in purple tea. The Plant Journal 97(5):825−40

doi: 10.1111/tpj.14161