| [1] |
Wolfe KH, Li WH, Sharp PM. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. |
| [2] |
Gualberto JM, Mileshina D, Wallet C, Niazi AK, Weber-Lotfi F, et al. 2014. The plant mitochondrial genome: Dynamics and maintenance. |
| [3] |
Yurina NP, Odintsova MS. 2016. Mitochondrial genome structure of photosynthetic eukaryotes. |
| [4] |
Palmer JD, Herbon LA. 1988. Plant mitochondrial DNA evolves rapidly in structure, but slowly in sequence. |
| [5] |
Sloan DB, Wu Z, Sharbrough J. 2018. Correction of persistent errors in Arabidopsis reference mitochondrial genomes. |
| [6] |
Wang L, Liu X, Xu Y, Zhang Z, Wei Y, et al. 2024. Assembly and comparative analysis of the first complete mitochondrial genome of a traditional Chinese medicine Angelica biserrata (Shan et Yuan) Yuan et Shan. |
| [7] |
Zhang K, Qu G, Zhang Y, Liu J. 2024. Assembly and comparative analysis of the first complete mitochondrial genome of Astragalus membranaceus (Fisch.) Bunge: an invaluable traditional Chinese medicine. |
| [8] |
Chen X, Wu Z, Yang Y, Tao Q, Na N, et al. 2025. The complete mitochondrial genome and phylogenetic analysis of Lotus corniculatus (Fabaceae, Papilionoideae). |
| [9] |
Editorial Committee of Flora of China, Chinese Academy of Sciences. 2010. Flora of China, Vol. 10: Fabaceae. Volume 10. Beijing: Science Press |
| [10] |
Shi FY, Qiu MN, Li GZ, Zhang G, Wu CC, et al. 2019. Research progress on the resource status, chemical composition, toxicity, exploitation and utilization of Sophora alopecuroides. |
| [11] |
Li JG, Yang XY, Huang W. 2016. Total alkaloids of Sophora alopecuroides inhibit growth and induce apoptosis in human cervical tumor HeLa Cells in vitro. |
| [12] |
Guo C, Yang L, Luo J, Zhang C, Xia Y, et al. 2016. Sophoraflavanone G from Sophora alopecuroides inhibits lipopolysaccharide-induced inflammation in RAW264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways. |
| [13] |
Wan CX, Luo JG, Ren XP, Kong LY. 2015. Interconverting flavonostilbenes with antibacterial activity from Sophora alopecuroides. |
| [14] |
Duan N, Deng Y, Liu Y, Zhang Y, Zhang LG, et al. 2019. The complete chloroplast genome of Sophora alopecuroides (Fabaceae). |
| [15] |
Zhu Y, Wang Y, Ma Z, Wang D, Yan F, et al. 2024. Genome-wide identification of CHYR gene family in Sophora alopecuroides and functional analysis of SaCHYR4 in response to abiotic stress. |
| [16] |
Abdel-Latif A, Osman G. 2017. Comparison of three genomic DNA extraction methods to obtain high DNA quality from maize. |
| [17] |
Bi C, Shen F, Han F, Qu Y, Hou J, et al. 2024. PMAT: an efficient plant mitogenome assembly toolkit using low-coverage HiFi sequencing data. |
| [18] |
Wick RR, Schultz MB, Zobel J, Holt KE. 2015. Bandage: interactive visualization of de novo genome assemblies. |
| [19] |
Jin JJ, Yu WB, Yang JB, Song Y, DePamphilis CW, et al. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. |
| [20] |
Lowe TM, Eddy SR. 1997. tRNAscan-SE a program for improved detection of transfer RNA genes in genomic sequence. |
| [21] |
Chen Y, Ye W, Zhang Y, Xu Y. 2015. High speed BLASTN: an accelerated MegaBLAST search tool. |
| [22] |
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. |
| [23] |
Zhang D, Gao F, Jakovlić I, Zou H, Zhang J, et al. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. |
| [24] |
Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. |
| [25] |
Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, et al. 2006. KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. |
| [26] |
Moberly JG, Bernards MT, Waynant KV. 2018. Key features and updates for Origin 2018. |
| [27] |
Wright F. 1990. The ‘effective number of codons’ used in a gene. |
| [28] |
Sueoka N. 1988. Directional mutation pressure and neutral molecular evolution. |
| [29] |
Beier S, Thiel T, Münch T, Scholz U, Mascher M. 2017. MISA-web: a web server for microsatellite prediction. |
| [30] |
Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, et al. 2001. REPuter: the manifold applications of repeat analysis on a genomic scale. |
| [31] |
Benson G. 1999. Tandem repeats finder: a program to analyze DNA sequences. |
| [32] |
Edera AA, Small I, Milone DH, Sanchez-Puerta MV. 2021. Deepred-Mt: Deep representation learning for predicting C-to-U RNA editing in plant mitochondria. |
| [33] |
Lenz H, Hein A, Knoop V. 2018. Plant organelle RNA editing and its specificity factors: enhancements of analyses and new database features in PREPACT 3.0. |
| [34] |
Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a “one for all, all for one” bioinformatics platform for biological big-data mining. |
| [35] |
Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. |
| [36] |
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. |
| [37] |
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. |
| [38] |
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic Era. |
| [39] |
Cole LW, Guo W, Mower JP, Palmer JD. 2018. High and variable rates of repeat-mediated mitochondrial genome rearrangement in a genus of plants. |
| [40] |
Xu WQ. 2020. The Mitochondrial Genome of Cistanche Genus in China. Thesis. Chinese Academy of Medical Sciences & Peking Union Medical College. doi: 10.27648/d.cnki.gzxhu.2020.000890 |
| [41] |
Smith DR, Keeling PJ. 2015. Mitochondrial and plastid genome architecture: reoccurring themes, but significant differences at the extremes. |
| [42] |
Hao Z, Zhang Z, Jiang J, Pan L, Zhang J, et al. 2024. Complete mitochondrial genome of Melia azedarach L., reveals two conformations generated by the repeat sequence mediated recombination. |
| [43] |
Xu D, Wang T, Huang J, Wang Q, Wang Z, et al. 2025. Comparative analysis of mitochondrial genomes of Stemona tuberosa lour. reveals heterogeneity in structure, synteny, intercellular gene transfer, and RNA editing. |
| [44] |
Yang JX, Dierckxsens N, Bai MZ, Guo YY. 2023. Multichromosomal mitochondrial genome of Paphiopedilum micranthum: compact and fragmented genome, and rampant intracellular gene transfer. |
| [45] |
Sun T, Bentolila S, Hanson MR. 2016. The unexpected diversity of plant organelle RNA editosomes. |
| [46] |
Zhu L, Xian FJ, Zhang QN, Hu J. 2022. Research progress of RNA editing. |
| [47] |
Planchard N, Bertin P, Quadrado M, Dargel-Graffin C, Hatin I, et al. 2018. The translational landscape of Arabidopsis mitochondria. |
| [48] |
Picardi E, Horner DS, Chiara M, Schiavon R, Valle G, et al. 2010. Large-scale detection and analysis of RNA editing in grape mtDNA by RNA deep-sequencing. |
| [49] |
Li J, Li J, Ma Y, Kou L, Wei J, et al. 2022. The complete mitochondrial genome of okra (Abelmoschus esculentus): using nanopore long reads to investigate gene transfer from chloroplast genomes and rearrangements of mitochondrial DNA molecules. |
| [50] |
Unseld M, Marienfeld JR, Brandt P, Brennicke A. 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. |