[1]

Mukhopadhyay R, Sarkar B, Jat HS, Sharma PC, Bolan NS. 2021. Soil salinity under climate change: challenges for sustainable agriculture and food security. Journal of Environmental Management 280:111736

doi: 10.1016/j.jenvman.2020.111736
[2]

Liu L, Wang B. 2021. Protection of halophytes and their uses for cultivation of saline-alkali soil in China. Biology 10:353

doi: 10.3390/biology10050353
[3]

Guo X, Peng W, Xu X, Xie K, Yang X. 2023. The potential of endophytes in improving salt–alkali tolerance and salinity resistance in plants. International Journal of Molecular Sciences 24:16917

doi: 10.3390/ijms242316917
[4]

Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytologist 179:945−63

doi: 10.1111/j.1469-8137.2008.02531.x
[5]

Guo M, Wang XS, Guo HD, Bai SY, Khan A, et al. 2022. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: a review. Frontiers in Plant Science 13:949541

doi: 10.3389/fpls.2022.949541
[6]

Fang S, Hou X, Liang X. 2021. Response mechanisms of plants under saline-alkali stress. Frontiers in Plant Science 12:667458

doi: 10.3389/fpls.2021.667458
[7]

Liu M, Li X, Yin B, Sun Y, Liang B, et al. 2023. Tolerance of transgenic Arabidopsis thaliana overexpressing apple MdAGO4.1 gene to drought and salt stress. Journal of Applied Botany and Food Quality 96:11−19

doi: 10.5073/jabfq.2023.096.002
[8]

Zhang M, Liu Y, Han G, Zhang Y, Wang B, et al. 2021. Salt tolerance mechanisms in trees: research progress. Trees 35:717−30

doi: 10.1007/s00468-020-02060-0
[9]

Ganapati RK, Naveed SA, Zafar S, Wang W, Xu J. 2022. Saline-alkali tolerance in rice: physiological response, molecular mechanism, and QTL identification and application to breeding. Rice Science 29:412−34

doi: 10.1016/j.rsci.2022.05.002
[10]

Adem GD, Roy SJ, Zhou M, Bowman JP, Shabala S. 2014. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley. BMC Plant Biology 14:113

doi: 10.1186/1471-2229-14-113
[11]

Xu Y, Hu W, Liu J, Song S, Hou X, et al. 2020. An aquaporin gene MaPIP2-7 is involved in tolerance to drought, cold and salt stresses in transgenic banana (Musa acuminata L.). Plant Physiology and Biochemistry 147:66−76

doi: 10.1016/j.plaphy.2019.12.011
[12]

Pandolfi C, Azzarello E, Mancuso S, Shabala S. 2016. Acclimation improves salt stress tolerance in Zea mays plants. Journal of Plant Physiology 201:1−8

doi: 10.1016/j.jplph.2016.06.010
[13]

Zhang W, Zhi W, Qiao H, Huang J, Li S, et al. 2023. H2O2-dependent oxidation of the transcription factor GmNTL1 promotes salt tolerance in soybean. The Plant Cell 36:112−35

doi: 10.1093/plcell/koad250
[14]

Zhuang Y, Wei M, Ling C, Liu Y, Amin AK, et al. 2021. EGY3 mediates chloroplastic ROS homeostasis and promotes retrograde signaling in response to salt stress in Arabidopsis. Cell Reports 36:109384

doi: 10.1016/j.celrep.2021.109384
[15]

Li J, Yang Y. 2023. How do plants maintain pH and ion homeostasis under saline-alkali stress? Frontiers in Plant Science 14:1217193

doi: 10.3389/fpls.2023.1217193
[16]

Cao Y, Song H, Zhang L. 2022. New insight into plant saline-alkali tolerance mechanisms and application to breeding. International Journal of Molecular Sciences 23:16048

doi: 10.3390/ijms232416048
[17]

Musacchi S, Serra S. 2018. Apple fruit quality: overview on pre-harvest factors. Scientia Horticulturae 234:409−30

doi: 10.1016/j.scienta.2017.12.057
[18]

Wang QJ, Sun H, Dong QL, Sun TY, Jin ZX, et al. 2016. The enhancement of tolerance to salt and cold stresses by modifying the redox state and salicylic acid content via the cytosolic malate dehydrogenase gene in transgenic apple plants. Plant Biotechnology Journal 14:1986−97

doi: 10.1111/pbi.12556
[19]

Foster TM, McAtee PA, Waite CN, Boldingh HL, McGhie TK. 2017. Apple dwarfing rootstocks exhibit an imbalance in carbohydrate allocation and reduced cell growth and metabolism. Horticulture Research 4:17009

doi: 10.1038/hortres.2017.9
[20]

Tworkoski T, Fazio G, Glenn DM. 2016. Apple rootstock resistance to drought. Scientia Horticulturae 204:70−78

doi: 10.1016/j.scienta.2016.01.047
[21]

Li J, Yan G, Duan X, Zhang K, Zhang X, et al. 2022. Research progress and trends in metabolomics of fruit trees. Frontiers in Plant Science 13:881856

doi: 10.3389/fpls.2022.881856
[22]

Yin H, Chen C, He Y, Jia J, Chen Y, et al. 2023. Synergistic estimation of soil salinity based on Sentinel-1 image texture and Sentinel-2 salinity spectral indices. Journal of Applied Remote Sensing 17:018502

doi: 10.1117/1.jrs.17.018502
[23]

Tahir MM, Lu Z, Wang C, Shah K, Li S, et al. 2022. Nitrate application induces adventitious root growth by regulating gene expression patterns in apple rootstocks. Journal of Plant Growth Regulation 41:3467−78

doi: 10.1007/s00344-021-10527-8
[24]

Pierret A, Gonkhamdee S, Jourdan C, Maeght JL. 2013. IJ_Rhizo: an open-source software to measure scanned images of root samples. Plant and Soil 373:531−39

doi: 10.1007/s11104-013-1795-9
[25]

Jia XM, Wang H, Svetla S, Zhu YF, Hu Y, et al. 2019. Comparative physiological responses and adaptive strategies of apple Malus halliana to salt, alkali and saline-alkali stress. Scientia Horticulturae 245:154−62

doi: 10.1016/j.scienta.2018.10.017
[26]

Xue H, Zhang F, Zhang ZH, Fu JF, Wang F, et al. 2015. Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress. Scientia Horticulturae 190:24−30

doi: 10.1016/j.scienta.2015.04.009
[27]

Zhang CL, Zhang YL, Hu X, Xiao X, Wang GL, et al. 2020. An apple long-chain acyl-CoA synthetase, MdLACS4, induces early flowering and enhances abiotic stress resistance in Arabidopsis. Plant Science 297:110529

doi: 10.1016/j.plantsci.2020.110529
[28]

Wang XN, Yang F, Zhang JC, Ren YR, An JP, et al. 2023. Ectopic expression of MmCYP1A1, a mouse cytochrome P450 gene, positively regulates stress tolerance in apple calli and Arabidopsis. Plant Cell Reports 42:433−48

doi: 10.1007/s00299-022-02969-5
[29]

Zhang JC, Wang XF, Wang XN, Wang FP, Ji XL, et al. 2020. Abscisic acid alleviates iron deficiency by regulating iron distribution in roots and shoots of apple. Scientia Horticulturae 262:109018

doi: 10.1016/j.scienta.2019.109018
[30]

Liu HF, Zhang TT, Liu YQ, Kang H, Rui L, et al. 2023. Genome-wide analysis of the 6B-INTERACTING PROTEIN1 gene family with functional characterization of MdSIP1-2 in Malus domestica. Plant Physiology and Biochemistry 195:89−100

doi: 10.1016/j.plaphy.2022.12.023
[31]

Sun S, Liu A, Li Z, Guo T, Chen S, et al. 2023. Anthocyanin synthesis is critical for melatonin-induced chromium stress tolerance in tomato. Journal of Hazardous Materials 453:131456

doi: 10.1016/j.jhazmat.2023.131456
[32]

Yang J, Guo X, Li W, Chen P, Cheng Y, et al. 2021. MdCCX2 of apple functions positively in modulation of salt tolerance. Environmental and Experimental Botany 192:104663

doi: 10.1016/j.envexpbot.2021.104663
[33]

Yang K, Li CY, An JP, Wang DR, Wang X, et al. 2021. The C2H2-type zinc finger transcription factor MdZAT10 negatively regulates drought tolerance in apple. Plant Physiology and Biochemistry 167:390−99

doi: 10.1016/j.plaphy.2021.08.014
[34]

Wang DR, Yang K, Wang X, Lin XL, Rui L, et al. 2022. Overexpression of MdZAT5, an C2H2-type zinc finger protein, regulates anthocyanin accumulation and salt stress response in apple calli and Arabidopsis. International Journal of Molecular Sciences 23:1897

doi: 10.3390/ijms23031897
[35]

Gharaghanipor N, Arzani A, Rahimmalek M, Ravash R. 2022. Physiological and transcriptome indicators of salt tolerance in wild and cultivated barley. Frontiers in Plant Science 13:819282

doi: 10.3389/fpls.2022.819282
[36]

Zhao W, Zhao H, Wang H, He Y. 2022. Research progress on the relationship between leaf senescence and quality, yield and stress resistance in horticultural plants. Frontiers in Plant Science 13:1044500

doi: 10.3389/fpls.2022.1044500
[37]

Garrido Y, Tudela JA, Marín A, Mestre T, Martínez V, et al. 2014. Physiological, phytochemical and structural changes of multi-leaf lettuce caused by salt stress. Journal of the Science of Food and Agriculture 94:1592−99

doi: 10.1002/jsfa.6462
[38]

Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, et al. 2021. Osmoregulation and its actions during the drought stress in plants. Physiologia Plantarum 172:1321−35

doi: 10.1111/ppl.13297
[39]

Tang W, Ye J, Yao X, Zhao P, Xuan W, et al. 2019. Genome-wide associated study identifies NAC42-activated nitrate transporter conferring high nitrogen use efficiency in rice. Nature Communications 10:5279

doi: 10.1038/s41467-019-13187-1
[40]

Bawa G, Yu X, Liu Z, Zhou Y, Sun X. 2023. Surviving the enemies: regulatory mechanisms of stomatal function in response to drought and salt stress. Environmental and Experimental Botany 209:105291

doi: 10.1016/j.envexpbot.2023.105291
[41]

Alonso S, Gautam K, Iglesias-Moya J, Martínez C, Jamilena M. 2024. Crosstalk between ethylene, jasmonate and ABA in response to salt stress during germination and early plant growth in Cucurbita pepo. International Journal of Molecular Sciences 25:8728

doi: 10.3390/ijms25168728
[42]

Song X, Zhang M, Wang TT, Duan YY, Ren J, et al. 2025. Polyploidization leads to salt stress resilience via ethylene signaling in citrus plants. New Phytologist 246:176−91

doi: 10.1111/nph.20428
[43]

Tavakkoli E, Rengasamy P, McDonald GK. 2010. High concentrations of Na+ and Cl ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. Journal of Experimental Botany 61:4449−59

doi: 10.1093/jxb/erq251
[44]

Zhou H, Shi H, Yang Y, Feng X, Chen X, et al. 2024. Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics 51:16−34

doi: 10.1016/j.jgg.2023.08.007
[45]

Gao T, Zhang Z, Liu X, Wu Q, Chen Q, et al. 2020. Physiological and transcriptome analyses of the effects of exogenous dopamine on drought tolerance in apple. Plant Physiology and Biochemistry 148:260−72

doi: 10.1016/j.plaphy.2020.01.022
[46]

Hu L, Zhou K, Li Y, Chen X, Liu B, et al. 2018. Exogenous myo-inositol alleviates salinity-induced stress in Malus hupehensis Rehd. Plant Physiology and Biochemistry 133:116−26

doi: 10.1016/j.plaphy.2018.10.037
[47]

Shi XP, Ren JJ, Yu Q, Zhou SM, Ren QP, et al. 2018. Overexpression of SDH confers tolerance to salt and osmotic stress, but decreases ABA sensitivity in Arabidopsis. Plant Biology 20:327−37

doi: 10.1111/plb.12664
[48]

He Y, Yang X, Xu C, Guo D, Niu L, et al. 2018. Overexpression of a novel transcriptional repressor GmMYB3a negatively regulates salt–alkali tolerance and stress-related genes in soybean. Biochemical and Biophysical Research Communications 498:586−91

doi: 10.1016/j.bbrc.2018.03.026
[49]

Mohammadi Alagoz S, Hadi H, Toorchi M, Pawłowski TA, Asgari Lajayer B, et al. 2023. Morpho-physiological responses and growth indices of triticale to drought and salt stresses. Scientific Reports 13:8896

doi: 10.1038/s41598-023-36119-y
[50]

Li X, Peng X, Du Z, Li S, Lin J. 2020. Biomass, gas exchange and chlorophyll fluorescence in wheat seedlings under salt and alkali stress. International Journal of Agriculture and Biology 23:751−56

doi: 10.17957/IJAB/15.1348
[51]

Wu J, Li J, Su Y, He Q, Wang J, et al. 2017. A morphophysiological analysis of the effects of drought and shade on Catalpa bungei plantlets. Acta Physiologiae Plantarum 39:80

doi: 10.1007/s11738-017-2380-2
[52]

Lawson T, Oxborough K, Morison JIL, Baker NR. 2002. Responses of photosynthetic electron transport in stomatal guard cells and mesophyll cells in intact leaves to light, CO2, and humidity. Plant Physiology 128:52−62

doi: 10.1104/pp.010317
[53]

Li S, Zhang Y, Liu Y, Zhang P, Wang X, et al. 2024. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. The Plant Cell 36:605−25

doi: 10.1093/plcell/koad307
[54]

Acharya BR, Assmann SM. 2009. Hormone interactions in stomatal function. Plant Molecular Biology 69:451−62

doi: 10.1007/s11103-008-9427-0
[55]

Mishra A, Tanna B. 2017. Halophytes: potential resources for salt stress tolerance genes and promoters. Frontiers in Plant Science 8:829

doi: 10.3389/fpls.2017.00829
[56]

Shavrukov Y. 2013. Salt stress or salt shock: which genes are we studying? Journal of Experimental Botany 64:119−27

doi: 10.1093/jxb/ers316
[57]

Li Q, Liu J, Tan D, Allan A, Jiang Y, et al. 2013. A genome-wide expression profile of salt-responsive genes in the apple rootstock Malus zumi. International Journal of Molecular Sciences 14:21053−70

doi: 10.3390/ijms141021053
[58]

Hu DG, Li M, Luo H, Dong QL, Yao YX, et al. 2012. Molecular cloning and functional characterization of MdSOS2 reveals its involvement in salt tolerance in apple callus and Arabidopsis. Plant Cell Reports 31:713−22

doi: 10.1007/s00299-011-1189-5
[59]

Guerrero-Sánchez VM, López-Hidalgo C, Rey MD, Castillejo MÁ, Jorrín-Novo JV, et al. 2022. Multiomic data integration in the analysis of drought-responsive mechanisms in Quercus ilex seedlings. Plants 11:3067

doi: 10.3390/plants11223067
[60]

Zhou L, Yarra R, Yang Y, Liu Y, Yang M, et al. 2022. The oil palm R2R3-MYB subfamily genes EgMYB111 and EgMYB157 improve multiple abiotic stress tolerance in transgenic plants. Plant Cell Reports 41:377−93

doi: 10.1007/s00299-021-02814-1