| [1] |
Bartley BGD. 2005. The genetic diversity of acao and its utilization. Wallingford: CABI Publishing. 341 pp |
| [2] |
International Cocoa Organization. 2022. ICCO quarterly bulletin of cocoa statistics. www.icco.org/wp-content/uploads/Production_QBCS-XLIX-No.-2.pdf |
| [3] |
Voora V, Bermúdez S, Larrea C. 2019. Global market report: cocoa. Winnipeg: International Institute for Sustainable Development. 12 pp |
| [4] |
Kongor JE, Owusu M, Oduro-Yeboah C. 2024. Cocoa production in the 2020s: challenges and solutions. |
| [5] |
Umaharan P. 2018. Achieving sustainable cultivation of cocoa. London: Burleigh Dodds Science Publishing. Volume 2. 588 pp. doi: 10.1201/9781351114547 |
| [6] |
FAOSTAT. 2024. Food and agriculture data. www.fao.org/faostat/en/#data |
| [7] |
Willer H, Travnicek J, Meier C, Schlatter B. 2024. The World of Organic Agriculture: Statistics and Emerging Trends 2024. Research Institute of Organic Agriculture (FiBL) and IFOAM – Organics International. www.organic-world.net/yearbook/yearbook-2024.html |
| [8] |
Arévalo-Gardini E, Meinhardt LW, Zuñiga LC, Arévalo-Gardni J, Motilal L, et al. 2019. Genetic identity and origin of "Piura Porcelana" — a fine-flavored traditional variety of cacao (Theobroma cacao) from the Peruvian Amazon. |
| [9] |
Arévalo-Gardini E, Arévalo-Hernández CO, Meinhardt LM, Motilal L, Umaharan P, et al. 2023. Wild cacao in Peruvian Amazon - Progress in analysis of genetic diversity and population structure. Proc. Plant and Animal Genome Conference (PAG 30), Cacao Genomics Workshop, San Diego, 2023. https://plan.core-apps.com/pag_2023/abstract/abce8776-3a73-4565-b14e-cbf1b303804c |
| [10] |
Meinhardt LW, Zhang D, Samuels G. 2011. Peruvian cacao collection trip yields treasures. Agricultural Research September 2011:8–10. https://agresearchmag.ars.usda.gov/AR/archive/2011/Sep/cacao0911.pdf |
| [11] |
Zhang D, Arevalo-Gardini E, Gutarra B, Baligar V, Meinhardt L. 2013. The newly collected wild cacao germplasm from Peruvian Amazon and its implication for disease resistance. Proc. Plant and Animal Genome XXI Conference. W127, San Diego. https://pag.confex.com/pag/xxi/webprogram/Paper7789.html |
| [12] |
Zhang D, Motilal L. 2016. Origin, dispersal, and current global distribution of cacao genetic diversity. In Cacao Diseases, eds Bailey B, Meinhardt L. Cham: Springer. pp. 3–31 doi: 10.1007/978-3-319-24789-2_1 |
| [13] |
Motamayor JC, Lachenaud P, da Silva e Mota JW, Loor R, Kuhn DN, et al. 2008. Geographic and genetic population differentiation of the Amazonian chocolate tree (Theobroma cacao L). |
| [14] |
Muller E, Ullah I, Dunwell JM, Daymond AJ, Richardson M, et al. 2021. Identification and distribution of novel badnaviral sequences integrated in the genome of cacao (Theobroma cacao). |
| [15] |
Arévalo-Gardini E, Arévalo-Hernández CO, Baligar VC, He ZL. 2017. Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru. |
| [16] |
Arévalo-Hernández CO, Arévalo-Gardini E, Farfan A, Amaringo-Gomez M, Daymond A, et al. 2022. Growth and nutritional responses of juvenile wild and domesticated cacao genotypes to soil acidity. |
| [17] |
Argout X, Martin G, Droc G, Fouet O, Labadie K, et al. 2017. The cacao Criollo genome v2.0: an improved version of the genome for genetic and functional genomic studies. |
| [18] |
Hämälä T, Guiltinan MJ, Marden, JH, Maximova SN, DePamphilis CW, et al. 2020. Gene expression modularity reveals footprints of polygenic adaptation in Theobroma cacao. |
| [19] |
Nousias O, Zheng J, Li T, Meinhardt LW, Bailey B, et al. 2024. Three de novo assembled wild cacao genomes from the Upper Amazon. |
| [20] |
Wickramasuriya AM, Dunwell JM. 2018. Cacao biotechnology: current status and future prospects. |
| [21] |
Bekele FL, Bidaisee GG, Allegre M, Argout X, Fouet O, et al. 2022. Genome-wide association studies and genomic selection assays made in a large sample of cacao (Theobroma cacao L.) germplasm reveal significant marker-trait associations and good predictive value for improving yield potential. |
| [22] |
McElroy MS, Navarro AJR, Mustiga G, Stack C, Gezan S, et al. 2018. Prediction of cacao (Theobroma cacao) resistance to Moniliophthora spp. diseases via genome-wide association analysis and genomic selection. |
| [23] |
Osorio-Guarín JA, Berdugo-Cely JA, Coronado-Silva RA, Baez E, Jaimes Y, et al. 2020. Genome-wide association study reveals novel candidate genes associated with productivity and disease resistance to Moniliophthora spp. in cacao (Theobroma cacao L.). |
| [24] |
Romero Navarro JA, Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A, Haiminen N, et al. 2017. Application of genome wide association and genomic prediction for improvement of cacao productivity and resistance to black and frosty pod diseases. |
| [25] |
González-Orozco CE, Galán AAS, Ramos PE, Yockteng R. 2020. Exploring the diversity and distribution of crop wild relatives of cacao (Theobroma cacao L.) in Colombia. |
| [26] |
Tscharntke T, Ocampo-Ariza C, Vansynghel J, Ivañez-Ballesteros B, Aycart P, et al. 2023. Socio-ecological benefits of fine-flavor cacao in its center of origin. |
| [27] |
Arévalo-Gardini E, Canto M, Alegre J, Loli O, Julca A, et al. 2015. Changes in soil physical and chemical properties in long term improved natural and traditional agroforestry management systems of cacao genotypes in Peruvian Amazon. |
| [28] |
García-Carrión L. 2010. Catálogo de cultivares de cacao del Perú. Lima: Ministerio de Agricultura |
| [29] |
Phillips-Mora W, Arciniegas-Leal A, Mata-Quirós A. Motamayor-Arias JC. 2012. Catálogo de Clones de Cacao Seleccionados por el CATIE para Siembras Comerciales. Manual Técnico 105. Turrialba: CATIE. 68 pp |
| [30] |
Restrepo Quiroz TI, Urrego Posso JE. 2018. Protocolo para la caracterización morfológica de árboles élite de cacao (Theobroma cacao L.). Compañía Nacional de Chocolates S. A. S. https://chocolates.com.co/wp-content/uploads/2024/02/Cartilla_Protocolo_Cacao_dic20_VFF.pdf |
| [31] |
López M, Deras E, Parada-Berrios FA, Lara-Ascencio F. 2018. Caracterización morfoagronómica in situ de cacao criollo (Theobroma cacao L.) en lugares de prevalencia natural y su incidencia en la selección de germoplasma promisorio en El Salvador. Revista Agrociencia 1(4):25−34 |
| [32] |
Vásquez-García J, Santos-Pelaez JC, Malqui-Ramos R, Vigo CN, Alvarado CW, et al. 2022. Agromorphological characterization of cacao (Theobroma cacao L.) accessions from the germplasm bank of the National Institute of Agrarian Innovation, Peru. |
| [33] |
Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, et al. 2020. InfoStat versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. www.infostat.com.ar |
| [34] |
dos Santos Dias LA, Barriga JP, Kageyama PY, de Almeida CMVC. 2003. Variation and its distribution in wild cacao populations from the Brazilian Amazon. |
| [35] |
Motamayor JC, Mockaitis K, Schmutz J, Haiminen N, Livingstone D, 3rd, et al. 2013. The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color. |
| [36] |
Daymond AJ, Hadley P. 2008. Differential effects of temperature on fruit development and bean quality of contrasting genotypes of cacao (Theobroma cacao). |
| [37] |
López-Hernández M, Sandoval-Aldana A, García-Lozano J, Criollo-Nuñez J. 2022. Cacao materials (Theobroma cacao L.) from different production areas in Colombia: a morphological study. |
| [38] |
Sereno ML, Albuquerque PSB, Vencovsky R, Figueira A. 2006. Genetic diversity and natural population structure of cacao (Theobroma cacao L.) from the Brazilian Amazon evaluated by microsatellite markers. |
| [39] |
Zhang D, Arevalo-Gardini E, Mischke S, Zúñiga-Cernades L, Barreto-Chavez A, et al. 2006. Genetic diversity and structure of managed and semi-natural populations of cocoa (Theobroma cacao) in the Huallaga and Ucayali Valleys of Peru. |
| [40] |
Thomas E, Van Zonneveld M, Loo J, Hodgkin T, Galluzzi G, et al. 2012. Present spatial diversity patterns of Theobroma cacao L. in the Neotropics reflect genetic differentiation in Pleistocene refugia followed by human-influenced dispersal. |
| [41] |
Batista L. 2009. Guía técnica: El cultivo de cacao en la República Dominicana. Santo Domingo: Centro para el Desarrollo Agropecuario y Forestal, Inc. https://cedaf.org.do/wp-content/uploads/2022/08/cacao.pdf |
| [42] |
End MJ, Daymond AJ, Hadley P. 2021. Technical guidelines for the safe movement of cacao germplasm. Revised from the FAO/IPGRI Technical Guidelines No. 20 |
| [43] |
Lahive F, Hadley P, Daymond AJ. 2019. The physiological responses of cacao to the environment and the implications for climate change resilience: a review. |
| [44] |
Aneja M, Gianfagna T, Ng E, Badilla I. 1992. Carbon dioxide and temperature influence pollen germination and fruit set in cocoa. |
| [45] |
Falque M, Vincent A, Vaissiere BE, Eskes AB. 1995. Effect of pollination intensity on fruit and seed set in cacao (Theobroma cacao L.). |
| [46] |
Zuidema PA, Leffelaar PA, Gerritsma W, Mommer L, Anten NPR. 2005. A physiological production model for cocoa (Theobroma cacao): model presentation, validation and application. |
| [47] |
Ballesteros PW, Lagos BTC, Hugo Ferney L. 2016. Morphological characterization of elite cacao trees (Theobroma cacao L.) in Tumaco, Nariño, Colombia. |
| [48] |
Bekele F, Phillips-Mora W. 2019. Cacao (Theobroma cacao L.) breeding. In Advances in Plant Breeding Strategies: Industrial and Food Crops, eds Al-Khayri JM, Jain SM, Johnson DV. Cham: Springer International Publishing. Volume 46. pp. 409–87 doi: 10.1007/978-3-030-23265-8_12 |