[1]

Bhatt P, Bhandari G, Bilal M. 2022. Occurrence, toxicity impacts and mitigation of emerging micropollutants in the aquatic environments: recent tendencies and perspectives. Journal of Environmental Chemical Engineering 10(3):107598

doi: 10.1016/j.jece.2022.107598
[2]

Yuan Y, Jia H, Xu D, Wang J. 2023. Novel method in emerging environmental contaminants detection: fiber optic sensors based on microfluidic chips. Science of The Total Environment 857:159563

doi: 10.1016/j.scitotenv.2022.159563
[3]

Zhang Y, Li J, Zhou Y, Zhang X, Liu X. 2024. Artificial intelligence-based microfluidic platform for detecting contaminants in water: a review. Sensors 24(13):4350

doi: 10.3390/s24134350
[4]

Zhang Y, Li J, Jiao S, Li Y, Zhou Y, et al. 2024. Microfluidic sensors for the detection of emerging contaminants in water: a review. Science of The Total Environment 929:172734

doi: 10.1016/j.scitotenv.2024.172734
[5]

Picinini-Zambelli J, Garcia ALH, Da Silva J. 2025. Emerging pollutants in the aquatic environments: a review of genotoxic impacts. Mutation Research - Reviews in Mutation Research 795:108519

doi: 10.1016/j.mrrev.2024.108519
[6]

Pan H, Shi J, Xu D, Wang J, Ma Q. 2026. Environmental occurrence, ecological risks, and microbial interactions of p-chloro-m-xylenol: an emerging ubiquitous antimicrobial agent. International Biodeterioration & Biodegradatio 207:106229

doi: 10.1016/j.ibiod.2025.106229
[7]

Zhang X, Liu J, Zhan T, Yu H, Ma Q. 2025. Environmental concentrations of benzalkonium chloride promote the horizontal transfer of extracellular antibiotic resistance genes via natural transformation. Process Safety and Environmental Protection 203:108003

doi: 10.1016/j.psep.2025.108003
[8]

Wang J, Zhao P, Wang J, Li S, Ma Q. 2025. Responses of microbial communities in coastal sediments exposed to triclocarban and triclosan. Marine Pollution Bulletin 212:117530

doi: 10.1016/j.marpolbul.2025.117530
[9]

Kumar V, Hemavathy S, Huligowda LKD, Umesh M, Chakraborty P, et al. 2025. Environmental pollutants as emerging concerns for cardiac diseases: a review on their impacts on cardiac health. Biomedicines 13(1):241

doi: 10.3390/biomedicines13010241
[10]

Biswas S, Gogoi P, Wilkinson M, Deka P, Das V, et al. 2025. Evaluating regulatory approaches to emerging pollutants. In Biotechnological Interventions in the Removal of Emerging Pollutants, eds Dey S, Bhattacharya S. Singapore: Springer. pp. 19–36 doi: 10.1007/978-981-97-9922-0_2

[11]

Zandaryaa S, Fares A, Eckstein G. 2025. Introduction—emerging pollutants in water: threats, challenges, and research needs. In Emerging Pollutants, eds Zandaryaa S, Fares A, Eckstein G. Cham: Springer. pp. 1–7 doi: 10.1007/978-3-031-71758-1_1

[12]

Götz R, Bauer OH, Friesel P, Roch K. 1998. Organic trace compounds in the water of the River Elbe near Hamburg Part II. Chemosphere 36(9):2103−2118

doi: 10.1016/s0045-6535(98)00009-5
[13]

Pereira WE, Hostettler FD. 1993. Nonpoint source contamination of the Mississippi River and its tributaries by herbicides. Environmental Science & Technology 27:1542−1552

doi: 10.1021/es00045a008
[14]

French VA, King SC, Kumar A, Northcott G, McGuinness K, et al. 2015. Characterisation of microcontaminants in Darwin Harbour, a tropical estuary of northern Australia undergoing rapid development. Science of The Total Environment 536:639−647

doi: 10.1016/j.scitotenv.2015.07.114
[15]

Costanzo SD, Watkinson AJ, Murby EJ, Kolpin DW, Sandstrom MW. 2007. Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments? Science of The Total Environment 384(1−3):214−220

doi: 10.1016/j.scitotenv.2007.05.036
[16]

Padhye LP, Yao H, Kung'u FT, Huang CH. 2014. Year-long evaluation on the occurrence and fate of pharmaceuticals, personal care products, and endocrine disrupting chemicals in an urban drinking water treatment plant. Water Research 51:266−276

doi: 10.1016/j.watres.2013.10.070
[17]

Westerhoff P, Yoon Y, Snyder S, Wert E. 2005. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environmental Science & Technology 39(17):6649−6663

doi: 10.1021/es0484799
[18]

Kosek K, Luczkiewicz A, Fudala-Książek S, Jankowska K, Szopińska M, et al. 2020. Implementation of advanced micropollutants removal technologies in wastewater treatment plants (WWTPs) - examples and challenges based on selected EU countries. Environmental Science & Policy 112:213−226

doi: 10.1016/j.envsci.2020.06.011
[19]

Yang Y, Ok YS, Kim KH, Kwon EE, Tsang YF. 2017. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: a review. Science of The Total Environment 596−597:303−320

doi: 10.1016/j.scitotenv.2017.04.102
[20]

Ghali H, Albers SE. 2024. An updated review on the safety of N, N-diethyl-meta-toluamide insect repellent use in children and the efficacy of natural alternatives. Pediatric Dermatology 41(3):403−409

doi: 10.1111/pde.15531
[21]

Martinez E, Vélez SM, Mayo M, Sastre MP. 2016. Acute toxicity assessment of N,N-diethyl-m-toluamide (DEET) on the oxygen flux of the dinoflagellate Gymnodinium instriatum. Ecotoxicology 25(1):248−252

doi: 10.1007/s10646-015-1564-z
[22]

Ricky R, Harini S, Shanthakumar S. 2025. Removal of N,N-diethyl-m-toluamide (DEET) using Chlorella vulgaris: a study on its tolerance limits and its effects on biochemical composition. Environmental Sciences Europe 37:36

doi: 10.1186/s12302-025-01075-z
[23]

Zhang H, Liu C, Sun Y, Tang S, Lei Y, et al. 2025. Toxicity assessment of N, N-Diethyl-meta-toluamide (DEET) in zebrafish embryos. Comparative Biochemistry and Physiology C: Toxicology & Pharmacology 297:110293

doi: 10.1016/j.cbpc.2025.110293
[24]

Lawrence JR, Waiser MJ, Swerhone GDW, Roy JL, Paule A, et al. 2019. N,N-Diethyl-m-toluamide exposure at an environmentally relevant concentration influences river microbial community development. Environmental Toxicology and Chemistry 38(11):2414−2425

doi: 10.1002/etc.4550
[25]

Golovko O, de Brito Anton L, Cascone C, Ahrens L, Lavonen E, et al. 2020. Sorption characteristics and removal efficiency of organic micropollutants in drinking water using granular activated carbon (GAC) in pilot-scale and full-scale tests. Water 12(7):2053

doi: 10.3390/w12072053
[26]

Choi S, Lee W, Son H, Lee W, Choi Y, et al. 2024. Occurrence, removal, and prioritization of organic micropollutants in four full-scale wastewater treatment plants in Korea. Chemosphere 361:142460

doi: 10.1016/j.chemosphere.2024.142460
[27]

United States Environmental Protection Agency (US EPA). 2013. DEET. Insect repellents: use and effectiveness. www.epa.gov/insect-repellents/deet

[28]

Katz TM, Miller JH, Hebert AA. 2008. Insect repellents: historical perspectives and new developments. Journal of the American Academy of Dermatology 58(5):865−871

doi: 10.1016/j.jaad.2007.10.005
[29]

Lee Y, Kim SH, Montell C. 2010. Avoiding DEET through insect gustatory receptors. Neuron 67(4):555−561

doi: 10.1016/j.neuron.2010.07.006
[30]

Lu W, Hwang JK, Zeng F, Leal WS. 2017. DEET as a feeding deterrent. PLoS One 12(12):e0189243

doi: 10.1371/journal.pone.0189243
[31]

Windheuser JJ, Haslam JL, Caldwell L, Shaffer RD. 1982. The use of N,N-diethyl-m-toluamide to enhance dermal and transdermal delivery of drugs. Journal of Pharmaceutical Sciences 71(11):1211−1213

doi: 10.1002/jps.2600711107
[32]

Kondo S, Mizuno T, Sugimoto I. 1988. Effects of penetration enhancers on percutaneous absorption of nifedipine. Comparison between Deet and Azone. Journal of Pharmacobio-Dynamics 11(2):88−94

doi: 10.1248/bpb1978.11.88
[33]

Di Lorenzo ML, Longo A. 2019. N,N-Diethyl-3-methylbenzamide (DEET): a mosquito repellent as functional plasticizer for poly(L-lactic acid). Thermochimica Acta 677:180−185

doi: 10.1016/j.tca.2019.02.004
[34]

Dodson RA, Kalenak AP, Du Bois DR, Gill-Ljunghammer SL, Matzger AJ. 2020. N,N-Diethyl-3-methylbenzamide (DEET) acts as a metal–organic framework synthesis solvent with phase-directing capabilities. Chemical Communications 56(69):9966−9969

doi: 10.1039/d0cc02741c
[35]

Rani R, Kumar D. 2024. Recent advances in degradation of N,N-diethyl-3-toluamide (DEET)—an emerging environmental contaminant: a review. Environmental Monitoring and Assessment 196(3):238

doi: 10.1007/s10661-024-12414-7
[36]

Global Growth Insights. 2025. Insect repellent market size, share, growth, and industry analysis, by types (vaporizers, spray, cream, others), by applications covered (kid, adult), regional insights and forecast to 2033. www.globalgrowthinsights.com/market-reports/insect-repellent-market-109465

[37]

Harburguer LV, Gonzalez PV. 2025. Mosquito repellents: a guide to the availability and effectiveness of commercial formulations in Argentina. Current Tropical Medicine Reports 12:6

doi: 10.1007/s40475-025-00340-8
[38]

Suppes LM, Huang CH, Lee WN, Brockman KJ. 2017. Sources of pharmaceuticals and personal care products in swimming pools. Journal of Water and Health 15(5):829−833

doi: 10.2166/wh.2017.004
[39]

Weng S, Sun P, Ben W, Huang CH, Lee LT, et al. 2014. The presence of pharmaceuticals and personal care products in swimming pools. Environmental Science & Technology Letters 1:495−498

doi: 10.1021/ez5003133
[40]

Weigel S, Kuhlmann J, Hühnerfuss H. 2002. Drugs and personal care products as ubiquitous pollutants: occurrence and distribution of clofibric acid, caffeine and DEET in the North Sea. Science of The Total Environment 295(1−3):131−141

doi: 10.1016/s0048-9697(02)00064-5
[41]

Wieck S, Olsson O, Kümmerer K. 2018. Not only biocidal products: Washing and cleaning agents and personal care products can act as further sources of biocidal active substances in wastewater. Environment International 115:247−256

doi: 10.1016/j.envint.2018.03.040
[42]

Hays SM, Kirman CR. 2023. Biomonitoring equivalents for N,N-diethyl-meta-toluamide (DEET). Regulatory Toxicology and Pharmacology 145:105506

doi: 10.1016/j.yrtph.2023.105506
[43]

Selim S, Hartnagel RE Jr, Osimitz TG, Gabriel KL, Schoenig GP. 1995. Absorption, metabolism, and excretion of N,N-diethyl-m-toluamide following dermal application to human volunteers. Fundamental and Applied Toxicology 25(1):95−100

doi: 10.1006/faat.1995.1043
[44]

Sui Q, Huang J, Deng S, Yu G, Fan Q. 2010. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Research 44(2):417−426

doi: 10.1016/j.watres.2009.07.010
[45]

Yang X, Flowers RC, Weinberg HS, Singer PC. 2011. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Research 45(16):5218−5228

doi: 10.1016/j.watres.2011.07.026
[46]

Liu WR, Yang YY, Liu YS, Zhao JL, Zhang QQ, et al. 2018. Biocides in the river system of a highly urbanized region: a systematic investigation involving runoff input. Science of The Total Environment 624:1023−1030

doi: 10.1016/j.scitotenv.2017.12.225
[47]

Clarke BO, Anumol T, Barlaz M, Snyder SA. 2015. Investigating landfill leachate as a source of trace organic pollutants. Chemosphere 127:269−275

doi: 10.1016/j.chemosphere.2015.02.030
[48]

Chen Y, Li M, Gao W, Guan Y, Hao Z, et al. 2024. Occurrence and risks of pharmaceuticals, personal care products, and endocrine-disrupting compounds in Chinese surface waters. Journal of Environmental Sciences 146:251−263

doi: 10.1016/j.jes.2023.10.011
[49]

Yang Y, Zhang X, Jiang J, Han J, Li W, et al. 2022. Which micropollutants in water environments deserve more attention globally? Environmental Science & Technology 56(1):13−29

doi: 10.1021/acs.est.1c04250
[50]

Sandstrom MW, Kolpin DW, Thurman EM, Zaugg SD. 2005. Widespread detection of N,N-diethyl-m-toluamide in U. S. Streams: comparison with concentrations of pesticides, personal care products, and other organic wastewater compounds. Environmental Toxicology and Chemistry 24(5):1029−1034

doi: 10.1897/04-297r.1
[51]

Gao X, Wang X, Li J, Ai S, Fu X, et al. 2020. Aquatic life criteria derivation and ecological risk assessment of DEET in China. Ecotoxicology and Environmental Safety 188:109881

doi: 10.1016/j.ecoenv.2019.109881
[52]

Gandar A, Giraudo M, Perion T, Houël E, Noguer T, et al. 2025. Targeted and untargeted discovery of UV filters and emerging contaminants with environmental risk assessment on the Northwestern Mediterranean coast. Marine Pollution Bulletin 212:117567

doi: 10.1016/j.marpolbul.2025.117567
[53]

Brumovský M, Bečanová J, Kohoutek J, Borghini M, Nizzetto L. 2017. Contaminants of emerging concern in the open sea waters of the Western Mediterranean. Environmental Pollution 229:976−983

doi: 10.1016/j.envpol.2017.07.082
[54]

Loos R, Tavazzi S, Paracchini B, Canuti E, Weissteiner C. 2013. Analysis of polar organic contaminants in surface water of the northern Adriatic Sea by solid-phase extraction followed by ultrahigh-pressure liquid chromatography–QTRAP® MS using a hybrid triple-quadrupole linear ion trap instrument. Analytical and Bioanalytical Chemistry 405(18):5875−5885

doi: 10.1007/s00216-013-6944-8
[55]

Folorunsho O, Bogush A, Kourtchev I. 2025. Occurrence of emerging and persistent organic pollutants in the rivers Cam, Ouse and Thames, UK. Science of The Total Environment 962:178436

doi: 10.1016/j.scitotenv.2025.178436
[56]

Tóth G, Háhn J, Szoboszlay S, Harkai P, Farkas M, et al. 2022. Spatiotemporal analysis of multi-pesticide residues in the largest Central European shallow lake, Lake Balaton, and its sub-catchment area. Environmental Sciences Europe 34:50

doi: 10.1186/s12302-022-00630-2
[57]

Robinson RFA, Mills GA, Grabic R, Bořík A, Fones GR. 2024. Quantification and risk assessment of polar organic contaminants in two chalk streams in Hampshire, UK using the Chemcatcher passive sampler. Science of The Total Environment 939:173316

doi: 10.1016/j.scitotenv.2024.173316
[58]

Sridhar D, Parimalarenganayaki S. 2025. Evaluation of sources, spatial and temporal distribution, ecological and health risk associated with CAF (Caffeine) and DEET (N,N-diethyl-meta-toluamide) contamination in the urban groundwater parts of Vellore city, Tamilnadu, India. Environmental Geochemistry and Health 47(2):44

doi: 10.1007/s10653-024-02351-2
[59]

Loos R, Locoro G, Comero S, Contini S, Schwesig D, et al. 2010. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Research 44(14):4115−4126

doi: 10.1016/j.watres.2010.05.032
[60]

Qian Y, Hu P, Lang-Yona N, Xu M, Guo C, et al. 2024. Global landfill leachate characteristics: occurrences and abundances of environmental contaminants and the microbiome. Journal of Hazardous Materials 461:132446

doi: 10.1016/j.jhazmat.2023.132446
[61]

Andrews WJ, Masoner JR, Cozzarelli IM. 2012. Emerging contaminants at a closed and an operating landfill in Oklahoma. Groundwater Monitoring & Remediation 32:120−130

doi: 10.1111/j.1745-6592.2011.01373.x
[62]

Kapelewska J, Kotowska U, Wiśniewska K. 2016. Determination of personal care products and hormones in leachate and groundwater from Polish MSW landfills by ultrasound-assisted emulsification microextraction and GC-MS. Environmental Science and Pollution Research International 23(2):1642−1652

doi: 10.1007/s11356-015-5359-9
[63]

Oppeltová P, Vlček V, Geršl M, Chaloupský P, Ulrich O, et al. 2024. Occurrence and path pollution of emerging organic contaminants in mineral water of hranice hypogenic Karst. Frontiers in Environmental Science 12:1339818

doi: 10.3389/fenvs.2024.1339818
[64]

Sodré FF, Santana JS, Sampaio TR, Brandão CCS. 2018. Seasonal and spatial distribution of caffeine, atrazine, atenolol and DEET in surface and drinking waters from the Brazilian Federal District. Journal of the Brazilian Chemical Society 29(9):1854−1865

doi: 10.21577/0103-5053.20180061
[65]

Pintado-Herrera MG, Combi T, Corada-Fernández C, González-Mazo E, Lara-Martín PA. 2017. Occurrence and spatial distribution of legacy and emerging organic pollutants in marine sediments from the Atlantic coast (Andalusia, SW Spain). Science of The Total Environment 605−606:980−994

doi: 10.1016/j.scitotenv.2017.06.055
[66]

Golovko O, Rehrl AL, Köhler S, Ahrens L. 2020. Organic micropollutants in water and sediment from Lake Mälaren, Sweden. Chemosphere 258:127293

doi: 10.1016/j.chemosphere.2020.127293
[67]

Teysseire FX, Cabana H, Huot Y, Segura PA. 2025. National scale assessment of the occurrence and risk of trace organic contaminants in Canadian Lake sediments. Science of The Total Environment 964:178569

doi: 10.1016/j.scitotenv.2025.178569
[68]

Masoner JR, Kolpin DW, Furlong ET, Cozzarelli IM, Gray JL, et al. 2014. Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States. Environmental Science: Processes & Impacts 16(10):2335−2354

doi: 10.1039/c4em00124a
[69]

Wu Y, Zhou S, Ye X, Chen D, Zheng K, et al. 2011. Transformation of pollutants in landfill leachate treated by a combined sequence batch reactor, coagulation, Fenton oxidation and biological aerated filter technology. Process Safety and Environmental Protection 89:112−120

doi: 10.1016/j.psep.2010.10.005
[70]

Han Y, Hu LX, Liu T, Liu J, Wang YQ, et al. 2022. Non-target, suspect and target screening of chemicals of emerging concern in landfill leachates and groundwater in Guangzhou, South China. Science of The Total Environment 837:155705

doi: 10.1016/j.scitotenv.2022.155705
[71]

Yu X, Sui Q, Lyu S, Zhao W, Wu D, et al. 2021. Rainfall influences occurrence of pharmaceutical and personal care products in landfill leachates: evidence from seasonal variations and extreme rainfall episodes. Environmental Science & Technology 55(8):4822−4830

doi: 10.1021/acs.est.0c07588
[72]

Yi X, Tran NH, Yin T, He Y, Gin KY. 2017. Removal of selected PPCPs, EDCs, and antibiotic resistance genes in landfill leachate by a full-scale constructed wetlands system. Water Research 121:46−60

doi: 10.1016/j.watres.2017.05.008
[73]

Baderna D, Maggioni S, Boriani E, Gemma S, Molteni M, et al. 2011. A combined approach to investigate the toxicity of an industrial landfill's leachate: chemical analyses, risk assessment and in vitro assays. Environmental Research 111(4):603−613

doi: 10.1016/j.envres.2011.01.015
[74]

Nika MC, Ntaiou K, Elytis K, Thomaidi VS, Gatidou G, et al. 2020. Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using Risk Quotient methodology. Journal of Hazardous Materials 394:122493

doi: 10.1016/j.jhazmat.2020.122493
[75]

Coes AL, Paretti NV, Foreman WT, Iverson JL, Alvarez DA. 2014. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods. Science of The Total Environment 473–474:731−741

doi: 10.1016/j.scitotenv.2013.12.082
[76]

Veach AM, Bernot MJ. 2011. Temporal variation of pharmaceuticals in an urban and agriculturally influenced stream. Science of The Total Environment 409(21):4553−4563

doi: 10.1016/j.scitotenv.2011.07.022
[77]

Dong B, Kahl A, Cheng L, Vo H, Ruehl S, et al. 2015. Fate of trace organics in a wastewater effluent dependent stream. Science of The Total Environment 518–519:479−490

doi: 10.1016/j.scitotenv.2015.02.074
[78]

Kolpin DW, Blazer VS, Gray JL, Focazio MJ, Young JA, et al. 2013. Chemical contaminants in water and sediment near fish nesting sites in the Potomac River basin: determining potential exposures to smallmouth bass (Micropterus dolomieu). Science of The Total Environment 443:700−716

doi: 10.1016/j.scitotenv.2012.09.063
[79]

De Gerónimo E, Aparicio VC, Bárbaro S, Portocarrero R, Jaime S, et al. 2014. Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107:423−431

doi: 10.1016/j.chemosphere.2014.01.039
[80]

Alvarez DA, Maruya KA, Dodder NG, Lao W, Furlong ET, et al. 2014. Occurrence of contaminants of emerging concern along the California coast (2009–10) using passive sampling devices. Marine Pollution Bulletin 81(2):347−354

doi: 10.1016/j.marpolbul.2013.04.022
[81]

Writer JH, Barber LB, Brown GK, Taylor HE, Kiesling RL, et al. 2010. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes. Science of The Total Environment 409(1):100−111

doi: 10.1016/j.scitotenv.2010.07.018
[82]

Zenobio JE, Sanchez BC, Leet JK, Archuleta LC, Sepúlveda MS. 2015. Presence and effects of pharmaceutical and personal care products on the Baca National Wildlife Refuge, Colorado. Chemosphere 120:750−755

doi: 10.1016/j.chemosphere.2014.10.050
[83]

Oppenheimer J, Eaton A, Badruzzaman M, Haghani AW, Jacangelo JG. 2011. Occurrence and suitability of sucralose as an indicator compound of wastewater loading to surface waters in urbanized regions. Water Research 45(13):4019−4027

doi: 10.1016/j.watres.2011.05.014
[84]

Bernot MJ, Smith L, Frey J. 2013. Human and veterinary pharmaceutical abundance and transport in a rural central Indiana stream influenced by confined animal feeding operations (CAFOs). Science of The Total Environment 445–446:219−230

doi: 10.1016/j.scitotenv.2012.12.039
[85]

Klosterhaus SL, Grace R, Hamilton MC, Yee D. 2013. Method validation and reconnaissance of pharmaceuticals, personal care products, and alkylphenols in surface waters, sediments, and mussels in an urban estuary. Environment International 54:92−99

doi: 10.1016/j.envint.2013.01.009
[86]

Merel S, Nikiforov AI, Snyder SA. 2015. Potential analytical interferences and seasonal variability in diethyltoluamide environmental monitoring programs. Chemosphere 127:238−245

doi: 10.1016/j.chemosphere.2015.02.025
[87]

Anumol T, Snyder SA. 2015. Rapid analysis of trace organic compounds in water by automated online solid-phase extraction coupled to liquid chromatography–tandem mass spectrometry. Talanta 132:77−86

doi: 10.1016/j.talanta.2014.08.011
[88]

Bargar TA, Garrison VH, Alvarez DA, Echols KR. 2013. Contaminants assessment in the coral reefs of Virgin Islands National Park and Virgin Islands Coral Reef National Monument. Marine Pollution Bulletin 70(1−2):281−288

doi: 10.1016/j.marpolbul.2013.03.001
[89]

Elliott SM, King KA, Krall AL, VanderMeulen DD. 2024. Trace organic contaminants in U. S. National Park surface waters: prevalence and ecological context. Environmental Pollution 362:125006

doi: 10.1016/j.envpol.2024.125006
[90]

Dai G, Wang B, Huang J, Dong R, Deng S, et al. 2015. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 119:1033−1039

doi: 10.1016/j.chemosphere.2014.08.056
[91]

Sun J, Luo Q, Wang D, Wang Z. 2015. Occurrences of pharmaceuticals in drinking water sources of major river watersheds, China. Ecotoxicology and Environmental Safety 117:132−140

doi: 10.1016/j.ecoenv.2015.03.032
[92]

Zhu S, Chen H, Li J. 2013. Sources, distribution and potential risks of pharmaceuticals and personal care products in Qingshan Lake basin, Eastern China. Ecotoxicology and Environmental Safety 96:154−159

doi: 10.1016/j.ecoenv.2013.06.033
[93]

Liu WR, Zhao JL, Liu YS, Chen ZF, Yang YY, et al. 2015. Biocides in the Yangtze River of China: spatiotemporal distribution, mass load and risk assessment. Environmental Pollution 200:53−63

doi: 10.1016/j.envpol.2015.02.013
[94]

Qi W, Müller B, Pernet-Coudrier B, Singer H, Liu H, et al. 2014. Organic micropollutants in the Yangtze River: seasonal occurrence and annual loads. Science of The Total Environment 472:789−799

doi: 10.1016/j.scitotenv.2013.11.019
[95]

Chen ZF, Ying GG, Liu YS, Zhang QQ, Zhao JL, et al. 2014. Triclosan as a surrogate for household biocides: an investigation into biocides in aquatic environments of a highly urbanized region. Water Research 58:269−279

doi: 10.1016/j.watres.2014.03.072
[96]

Wang Z, Zhang XH, Huang Y, Wang H. 2015. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China. Environmental Pollution 204:223−232

doi: 10.1016/j.envpol.2015.04.021
[97]

Zhang NS, Liu YS, Van den Brink PJ, Price OR, Ying GG. 2015. Ecological risks of home and personal care products in the riverine environment of a rural region in South China without domestic wastewater treatment facilities. Ecotoxicology and Environmental Safety 122:417−425

doi: 10.1016/j.ecoenv.2015.09.004
[98]

Ma R, Wang B, Yin L, Zhang Y, Deng S, et al. 2017. Characterization of pharmaceutically active compounds in Beijing, China: occurrence pattern, spatiotemporal distribution and its environmental implication. Journal of Hazardous Materials 323:147−155

doi: 10.1016/j.jhazmat.2016.05.030
[99]

Zhang L, Zhang X, Liu C, Ma D, Wang H, et al. 2024. Distribution and ecological risks of pharmaceuticals and personal care products with different anthropogenic pressures in typical watersheds in China. Science of The Total Environment 957: 1775173

doi: 10.1016/j.scitotenv.2024.177573
[100]

Dsikowitzky L, Dwiyitno, Heruwati E, Ariyani F, Irianto HE, et al. 2014. Exceptionally high concentrations of the insect repellent N,N-diethyl-m-toluamide (DEET) in surface waters from Jakarta, Indonesia. Environmental Chemistry Letters 12:407−411

doi: 10.1007/s10311-014-0462-6
[101]

Dsikowitzky L, Nordhaus I, Jennerjahn TC, Khrycheva P, Sivatharshan Y, et al. 2011. Anthropogenic organic contaminants in water, sediments and benthic organisms of the mangrove-fringed Segara Anakan Lagoon, Java, Indonesia. Marine Pollution Bulletin 62(4):851−862

doi: 10.1016/j.marpolbul.2011.02.023
[102]

Sudaryanto A, Witama RO, Nosaki K, Tanoue R, Suciati F, et al. 2023. Occurrence of emerging contaminants in Jakarta Bay, Indonesia: pharmaceuticals and personal care products. IOP Conference Series: Earth and Environmental Science 1137:012050

doi: 10.1088/1755-1315/1137/1/012050
[103]

You L, Nguyen VT, Pal A, Chen H, He Y, et al. 2015. Investigation of pharmaceuticals, personal care products and endocrine disrupting chemicals in a tropical urban catchment and the influence of environmental factors. Science of The Total Environment 536:955−963

doi: 10.1016/j.scitotenv.2015.06.041
[104]

Tran NH, Hu J, Ong SL. 2013. Simultaneous determination of PPCPs, EDCs, and artificial sweeteners in environmental water samples using a single-step SPE coupled with HPLC–MS/MS and isotope dilution. Talanta 113:82−92

doi: 10.1016/j.talanta.2013.03.072
[105]

Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA. 2010. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Science of The Total Environment 408(3):636−643

doi: 10.1016/j.scitotenv.2009.10.049
[106]

Rasmussen JJ, Baattrup-Pedersen A, Wiberg-Larsen P, McKnight US, Kronvang, B. 2011. Buffer strip width and agricultural pesticide contamination in Danish lowland streams: implications for stream and riparian management. Ecological Engineering 37:1990−1997

doi: 10.1016/j.ecoleng.2011.08.016
[107]

Robles-Molina J, Gilbert-López B, García-Reyes JF, Molina-Díaz A. 2014. Monitoring of selected priority and emerging contaminants in the Guadalquivir River and other related surface waters in the province of Jaén, South East Spain. Science of The Total Environment 479–480:247−257

doi: 10.1016/j.scitotenv.2014.01.121
[108]

Pintado-Herrera MG, González-Mazo E, Lara-Martín PA. 2014. Atmospheric pressure gas chromatography–time-of-flight-mass spectrometry (APGC–ToF-MS) for the determination of regulated and emerging contaminants in aqueous samples after stir bar sorptive extraction (SBSE). Analytica Chimica Acta 851:1−13

doi: 10.1016/j.aca.2014.05.030
[109]

Dsikowitzky L, Botalova O, Illgut S, Bosowski S, Schwarzbauer J. 2015. Identification of characteristic organic contaminants in wastewaters from modern paper production sites and subsequent tracing in a river. Journal of Hazardous Materials 300:254−262

doi: 10.1016/j.jhazmat.2015.07.001
[110]

Ruff M, Mueller MS, Loos M, Singer HP. 2015. Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry–identification of unknown sources and compounds. Water Research 87:145−154

doi: 10.1016/j.watres.2015.09.017
[111]

Calza P, Medana C, Raso E, Giancotti V, Minero C. 2011. N,N-diethyl-m-toluamide transformation in river water. Science of The Total Environment 409(19):3894−3901

doi: 10.1016/j.scitotenv.2011.06.006
[112]

Celano R, Piccinelli AL, Campone L, Rastrelli L. 2014. Ultra-preconcentration and determination of selected pharmaceutical and personal care products in different water matrices by solid-phase extraction combined with dispersive liquid–liquid microextraction prior to ultra high pressure liquid chromatography tandem mass spectrometry analysis. Journal of Chromatography A 1355:26−35

doi: 10.1016/j.chroma.2014.06.009
[113]

Erdélyi N, Gere D, Engloner A, Vargha M. 2024. Temperature-driven and discharge-driven variability of organic micropollutants in a large urban river and its implications for risk-based monitoring. Chemosphere 363:142803

doi: 10.1016/j.chemosphere.2024.142803
[114]

Dawood A, Drage DS, Harrad S, Abdallah MAE. 2024. Concentrations, partitioning and ecological risk of pharmaceuticals and personal care products in UK freshwater sediment. Environmental Pollution and Management 1:87−98

doi: 10.1016/j.epm.2024.08.006
[115]

Choi Y, Kim K, Kim D, Moon HB, Jeon J. 2020. Ny-Ålesund-oriented organic pollutants in sewage effluent and receiving seawater in the Arctic region of Kongsfjorden. Environmental Pollution 258:113792

doi: 10.1016/j.envpol.2019.113792
[116]

Rehrl AL, Golovko O, Ahrens L, Köhler S. 2020. Spatial and seasonal trends of organic micropollutants in Sweden's most important drinking water reservoir. Chemosphere 249:126168

doi: 10.1016/j.chemosphere.2020.126168
[117]

Chebii F, K'oreje K, Okoth M, Lutta S, Masime P, et al. 2024. Occurrence and environmental risks of contaminants of emerging concern across the River Athi Basin, Kenya, in dry and wet seasons. Science of The Total Environment 914:169696

doi: 10.1016/j.scitotenv.2023.169696
[118]

Chandrajith R, Zwiener C, Daniel C, Amann K., Nanayakkara N, et al. 2025. Screening of micro-organic compounds in groundwater from areas with chronic kidney disease of unclear aetiology (CKDu) in the dry zone of Sri Lanka. Exposure and Health 17:167−176

doi: 10.1007/s12403-024-00651-7
[119]

Stuart ME, Lapworth DJ, Thomas J, Edwards L. 2014. Fingerprinting groundwater pollution in catchments with contrasting contaminant sources using microorganic compounds. Science of The Total Environment 468–469:564−577

doi: 10.1016/j.scitotenv.2013.08.042
[120]

Sorensen JPR, Lapworth DJ, Nkhuwa DC, Stuart ME, Gooddy DCW, et al. 2015. Emerging contaminants in urban groundwater sources in Africa. Water Research 72:51−63

doi: 10.1016/j.watres.2014.08.002
[121]

Motúzová T, Gavlová A, Smutná K, Řepecká L, Vráblová M. 2025. Environmental impact of DEET: monitoring in aquatic ecosystems and ecotoxicity assessment. American Chemical Society Environmental Science & Technology Water 5:6342−6352

doi: 10.1021/acsestwater.5c00489
[122]

Astuti MP, Notodarmojo S, Priadi CR, Padhye LP. 2023. Contaminants of emerging concerns (CECs) in a municipal wastewater treatment plant in Indonesia. Environmental Science and Pollution Research International 30(8):21512−21532

doi: 10.1007/s11356-022-23567-8
[123]

Rodil R, Quintana JB, Concha-Graña E, López-Mahía P, Muniategui-Lorenzo S, et al. 2012. Emerging pollutants in sewage, surface and drinking water in Galicia (NW Spain). Chemosphere 86(10):1040−1049

doi: 10.1016/j.chemosphere.2011.11.053
[124]

Akinsulie OC, Idris I. 2024. Global re-emergence of dengue fever: the need for a rapid response and surveillance. The Microbe 4:100107

doi: 10.1016/j.microb.2024.100107
[125]

WHO. 2019. World Malaria Report 2019. World Health Organization

[126]

Zhang Y, Wang M, Huang M, Zhao J. 2024. Innovative strategies and challenges mosquito-borne disease control amidst climate change. Frontiers in Microbiology 15:1488106

doi: 10.3389/fmicb.2024.1488106
[127]

DeGennaro M. 2015. The mysterious multi-modal repellency of DEET. Fly 9(1):45−51

doi: 10.1080/19336934.2015.1079360
[128]

Frommer RL, Carestia RR, Vavra RW Jr. 1975. Field evaluation of deet-treated mesh jacket against black flies (Simuliidae). Journal of Medical Entomology 12(5):558−561

doi: 10.1093/jmedent/12.5.558
[129]

Leal WS. 2014. The enigmatic reception of DEET - the gold standard of insect repellents. Current Opinion in Insect Science 6:93−98

doi: 10.1016/j.cois.2014.10.007
[130]

Koloski CW, LeMoine CMR, Klonowski AR, Smith CM, Cassone BJ. 2019. Molecular evidence for the inhibition of cytochrome p450s and cholinesterases in ticks by the repellent DEET. Ticks and Tick-Borne Diseases 10(3):515−522

doi: 10.1016/j.ttbdis.2018.12.006
[131]

EPA. 1998. DEET reregistration eligibility decision factsheet. www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_PC-080301_1-Apr-98.pdf

[132]

Osimitz TG, Murphy JV, Fell LA, Page B. 2010. Adverse events associated with the use of insect repellents containing N, N-diethyl-m-toluamide (DEET). Regulatory Toxicology and Pharmacology 56(1):93−99

doi: 10.1016/j.yrtph.2009.09.004
[133]

Abou-Donia MB. 1996. Neurotoxicity resulting from coexposure to pyridostigmine bromide, deet, and permethrin: implications of Gulf War chemical exposures. Journal of Toxicology and Environmental Health 48(1):35−56

doi: 10.1080/009841096161456
[134]

Sudakin DL, Trevathan WR. 2003. DEET: a review and update of safety and risk in the general population. Journal of Toxicology: Clinical Toxicology 41(6):831−839

doi: 10.1081/clt-120025348
[135]

Zhu X, Liu W, Lin B, Qian H, Xu M, et al. 2025. From repellent to risk: DEET's adverse effects on hormones and bone health in kids. Journal of Advanced Research: In Press, Corrected Proof

doi: 10.1016/j.jare.2025.03.037
[136]

Liu CF, Chien LW. 2024. Associations between DEET, organophosphorus insecticides, and handgrip strength in diabetes: an NHANES analysis. Biomedicines 12(7):1461

doi: 10.3390/biomedicines12071461
[137]

Drakaki E, Stavros S, Konstantinou F, Mavrogianni D, Antonopoulou M, et al. 2024. Genotoxic effects of the insect repellent n, n-diethyl-meta-toluamide (DEET) and detection of retinoblastoma gene expression in human lymphocytes: a pilot study. Hellenic Journal of Obstetrics and Gynecology 23:115−123

doi: 10.33574/hjog.0556
[138]

Picinini-Zambelli J, Garcia ALH., Borges MS, Serpa ET, da Silva FR, et al. 2025. Exposure to emerging water contaminants and human health risk: cytotoxic and genotoxic effects of caffeine and diethyltoluamide (DEET) on eukaryotic cells. Chemosphere 381:144430

doi: 10.1016/j.chemosphere.2025.144430
[139]

Yang Y, Guo L, Li S, Zhang P. 2024. Association between percutaneous absorption of benzophenone-3 and N, N-diethyl-m-toluamide among the general adult population. Science of The Total Environment 951:175360

doi: 10.1016/j.scitotenv.2024.175360
[140]

Lee JT, Basak SK, Yang HH, Sullivan KA, Maxim T, et al. 2025. Synergistic cytotoxicity of permethrin and N,N-Diethyl-meta-toluamide on sinonasal epithelial cells. OTO Open 9(3):e70145

doi: 10.1002/oto2.70145
[141]

Tisch M, Schmezer P, Faulde M, Groh A, Maier H. 2002. Genotoxicity studies on permethrin, DEET and diazinon in primary human nasal mucosal cells. European Archives of Oto-Rhino-Laryngology 259(3):150−153

doi: 10.1007/s004050100406
[142]

Slaninova A, Modra H, Hostovsky M, Sisperova E, Blahova J, et al. 2014. Effects of subchronic exposure to N,N-diethyl-m-toluamide on selected biomarkers in common carp (Cyprinus carpio L.). BioMed Research International 2014:828515

doi: 10.1155/2014/828515
[143]

Edwards MA, Kimbrough K, Fuller N, Davenport E, Rider M, et al. 2024. An assessment and characterization of pharmaceuticals and personal care products (PPCPs) within the Great Lakes Basin: Mussel Watch Program (2013−2018). Environmental Monitoring and Assessment 196(4):345

doi: 10.1007/s10661-023-12119-3
[144]

Rodríguez-Aguilar BA, Peregrina-Lucano AA, Ceballos-Magaña SG, Rodríguez-García A, Calderon R, et al. 2024. Spatiotemporal variability of pesticides concentration in honeybees (Apis mellifera) and their honey from western Mexico. Risk assessment for honey consumption. Science of The Total Environment 947:174702

doi: 10.1016/j.scitotenv.2024.174702
[145]

Porsbring T, Arrhenius Å, Backhaus T, Kuylenstierna M, Scholze M, et al. 2007. The SWIFT periphyton test for high-capacity assessments of toxicant effects on microalgal community development. Journal of Experimental Marine Biology and Ecology 349(2):299−312

doi: 10.1016/j.jembe.2007.05.020
[146]

Sabater S, Guasch H, Ricart M, Romaní A, Vidal G, et al. 2007. Monitoring the effect of chemicals on biological communities. The biofilm as an interface. Analytical and Bioanalytical Chemistry 387(4):1425−1434

doi: 10.1007/s00216-006-1051-8
[147]

Lopez C, Nnorom MA, Tsang YF, Knapp CW. 2021. Pharmaceuticals and personal care products' (PPCPs) impact on enriched nitrifying cultures. Environmental Science and Pollution Research International 28(43):60968−60980

doi: 10.1007/s11356-021-14696-7
[148]

Kalaycı S, Demirci S, Sahin F. 2014. Determination of antimicrobial properties of picaridin and DEET against a broad range of microorganisms. World Journal of Microbiology and Biotechnology 30(2):407−411

doi: 10.1007/s11274-013-1456-4
[149]

ECB. 2003. Technical guidance document on risk assessment: Part II. Technical Report, EUR 20418 EN/2. Office for Official Publications of the European Communities, Luxembourg. (Accessed on 8, 7, 2025) https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/196375

[150]

Sun HQ, Du Y, Zhang ZY, Jiang WJ, Guo YM, et al. 2016. Acute toxicity and ecological risk assessment of benzophenone and N,N-diethyl-3 methylbenzamide in personal care products. International Journal of Environmental Research and Public Health 13(9):925

doi: 10.3390/ijerph13090925
[151]

Merel S, Snyder SA. 2016. Critical assessment of the ubiquitous occurrence and fate of the insect repellent N,N-diethyl-m-toluamide in water. Environment International 96:98−117

doi: 10.1016/j.envint.2016.09.004
[152]

Liu WR, Yang YY, Liu YS, Zhang LJ, Zhao JL, et al. 2017. Biocides in wastewater treatment plants: mass balance analysis and pollution load estimation. Journal of Hazardous Materials 329:310−320

doi: 10.1016/j.jhazmat.2017.01.057
[153]

Peng FJ, Feng XJ, Li S, Yu XL, Chen J, et al. 2025. Removal of emerging organic contaminants in a subsurface wastewater infiltration system: a preliminary study of microbial mechanism. Water Research 284:123960

doi: 10.1016/j.watres.2025.123960
[154]

Geiling EL. 2015. Removal of the micropollutants DEET and DEP in biological grey water treatment and the effect of DEP on microbiological processes. Master's thesis. Norwegian University of Science and Technology, Norway. pp. 51−52

[155]

Xu M, Yan S, Sun S, Ni Z, Wu W, et al. 2022. N, N -diethyl-m-toluamide (DEET) degradation by •OH and SO4•−-assisted AOPs in wastewater treatment: Theoretical studies into mechanisms, kinetics and toxicity. Journal of Environmental Chemical Engineering 10(5):108435

doi: 10.1016/j.jece.2022.108435
[156]

Son JH, Wang WL, Liu PH, Lee JW, Lee MY, et al. 2025. The combination of ozone and Mn(II) for efficient removal of ozone-resistant N, N-diethyl-3-toluamide. Water Research 283:123883

doi: 10.1016/j.watres.2025.123883
[157]

Piekutin J, Bolińska MI, Kotowska U, Koszelnik P, Puchlik M. 2025. Research of the possibility of removing organic pollutants from water by membrane methods and purification of the obtained concentrate by chemical methods. Economics and Environment 92(1):1105

doi: 10.34659/eis.2025.92.1.1105
[158]

Cai A, Deng J, Ye C, Zhu T, Ling X, et al. 2022. Highly efficient removal of DEET by UV-LED irradiation in the presence of iron-containing coagulant. Chemosphere 286:131613

doi: 10.1016/j.chemosphere.2021.131613
[159]

Wani AK, Akhtar N, Sher F, Navarrete AA, Américo-Pinheiro JHP. 2022. Microbial adaptation to different environmental conditions: molecular perspective of evolved genetic and cellular systems. Archives of Microbiology 204(2):144

doi: 10.1007/s00203-022-02757-5
[160]

Seller-Brison C, Brison A, Yu Y, Robinson SL, Fenner K. 2024. Adaptation towards catabolic biodegradation of trace organic contaminants in activated sludge. Water Research 266:122431

doi: 10.1016/j.watres.2024.122431
[161]

Li C, Zhu L, Axe L, Li M. 2025. Acclimation of sludge-derived biofilms for effective removal of emerging contaminants: impacts of inoculum source and carbon supplementation. Journal of Hazardous Materials 492:138235

doi: 10.1016/j.jhazmat.2025.138235
[162]

Dong W, Sun SP, Yang X, Zhou K, Li Y, et al. 2019. Enhanced emerging pharmaceuticals removal in wastewater after biotreatment by a low-pressure UVA/FeIII-EDDS/H2O2 process under neutral pH conditions. Chemical Engineering Journal 366:539−549

doi: 10.1016/j.cej.2019.02.109
[163]

Foolad M, Hu J, Tran NH, Ong SL. 2016. Sorption and biodegradation characteristics of the selected pharmaceuticals and personal care products onto tropical soil. Water Science and Technology 73(1):51−59

doi: 10.2166/wst.2015.461
[164]

Harb M, Wei CH, Wang N, Amy G, Hong PY. 2016. Organic micropollutants in aerobic and anaerobic membrane bioreactors: changes in microbial communities and gene expression. Bioresource Technology 218:882−891

doi: 10.1016/j.biortech.2016.07.036
[165]

Seo J, Lee YG, Kim SD, Cha CJ, Ahn JH, et al. 2005. Biodegradation of the insecticide N,N-diethyl-m-toluamide by fungi: identification and toxicity of metabolites. Archives of Environmental Contamination and Toxicology 48(3):323−328

doi: 10.1007/s00244-004-0029-9
[166]

Rivera-Cancel G, Sanders JM, Hay AG. 2012. Kinetics of hydrolysis and mutational analysis of N,N-diethyl-m-toluamide hydrolase from Pseudomonas putida DTB. The FEBS Journal 279(6):1044−1053

doi: 10.1111/j.1742-4658.2012.08495.x
[167]

Rivera-Cancel G, Bocioaga D, Hay AG. 2007. Bacterial degradation of N,N-diethyl-m-toluamide (DEET): cloning and heterologous expression of DEET hydrolase. Applied and Environmental Microbiology 73(9):3105−3108

doi: 10.1128/AEM.02765-06
[168]

Steenkamp DJ, Mallinson J. 1976. Trimethylamine dehydrogenase from a methylotrophic bacterium. I. Isolation and steady-state kinetics. Biochimica et Biophysica Acta (BBA) - Enzymology 429(3):705−719

doi: 10.1016/0005-2744(76)90319-3
[169]

Helbling DE, Hollender J, Kohler HE, Singer H, Fenner K. 2010. High-throughput identification of microbial transformation products of organic micropollutants. Environmental Science & Technology 44(17):6621−6627

doi: 10.1021/es100970m
[170]

Bilal M, Adeel M, Rasheed T, Zhao Y, Iqbal HMN. 2019. Emerging contaminants of high concern and their enzyme-assisted biodegradation–a review. Environment International 124:336−353

doi: 10.1016/j.envint.2019.01.011
[171]

Bilal M, Rasheed T, Zhao Y, Iqbal HMN. 2019. Agarose-chitosan hydrogel-immobilized horseradish peroxidase with sustainable bio-catalytic and dye degradation properties. International Journal of Biological Macromolecules 124:742−749

doi: 10.1016/j.ijbiomac.2018.11.220
[172]

Bilal M, Rasheed T, Iqbal HMN, Yan Y. 2018. Peroxidases-assisted removal of environmentally-related hazardous pollutants with reference to the reaction mechanisms of industrial dyes. Science of The Total Environment 644:1−13

doi: 10.1016/j.scitotenv.2018.06.274
[173]

Tran NH, Hu J, Urase T. 2013. Removal of the insect repellent N,N-diethyl-m-toluamide (DEET) by laccase-mediated systems. Bioresource Technology 147:667−671

doi: 10.1016/j.biortech.2013.08.113
[174]

Van Brenk B, Kleijburg FEL, Kemperman AJB, van der Meer WGJ. 2024. Wösten HAB. Enzymatic and non-enzymatic removal of organic micropollutants with spent mushroom substrate of Agaricus bisporus. Applied Microbiology and Biotechnology 108(1):301

doi: 10.1007/s00253-024-13132-3