[1]

Saridogan BGO, Islek C, Baba H, Akata I, Sevindik M. 2021. Antioxidant antimicrobial oxidant and elements contents of Xylaria polymorpha and X. hypoxylon (Xylariaceae). Fresenius Environmental Bulletin 30:5400−4

[2]

Islek C, Saridogan BGO, Sevindik M, Akata I. 2021. Biological activities and heavy metal contents of some Pholiota species. Fresenius Environmental Bulletin 30:6109−14

[3]

Dasgupta D, Basu P, Paul A, Acharya K, Chakraborty N. 2025. Schizophyllum commune, an underrated edible and medicinal mushroom: farm to industry. Studies in Fungi 10:e004

doi: 10.48130/sif-0025-0003
[4]

Wasser SP. 2011. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Applied Microbiology and Biotechnology 89:1323−32

doi: 10.1007/s00253-010-3067-4
[5]

Baba H, Sevindik M, Dogan M, Akgül H. 2020. Antioxidant, antimicrobial activities and heavy metal contents of some Myxomycetes. Fresenius Environmental Bulletin 29:7840−46

[6]

Dattaraj HR, Sridhar KR, Jagadish BR, Pavithra M. 2020. Bioactive potential of the wild edible mushroom Ramaria versatilis. Studies in Fungi 5:73−83

doi: 10.5943/sif/5/1/7
[7]

Krupodorova T, Barshteyn V, Sevindik M. 2022. Antioxidant and antimicrobial potentials of mycelial extracts of Hohenbuehelia myxotricha grown in different liquid culture media. BioTechnologia 103:19−28

doi: 10.5114/bta.2022.113912
[8]

Sevindik M, Bal C, Eraslan EC, Uysal İ, Mohammed FS. 2023. Medicinal mushrooms: a comprehensive study on their antiviral potential. Prospects in Pharmaceutical Sciences 21:42−56

doi: 10.56782/pps.141
[9]

Bal C, Sevindik M, Akgul H, Selamoglu Z. 2019. Oxidative stress index and antioxidant capacity of Lepista nuda collected from Gaziantep/Turkey. Sigma Journal of Engineering and Natural Sciences 37:1−5

[10]

Kumari B, Kamal S, Singh R, Sharma VP, Sanspal V, et al. 2022. Traditional knowledge of the wild edible mushrooms of Himachal Pradesh. Studies in Fungi 7:15

doi: 10.48130/SIF-2022-0015
[11]

Ayesha P, Maham A, Ariza A, Husnain H. 2020. "Ganoderma lucidum sensu lato" – a sacred mushroom for immortality. Studies in Fungi 5:508−16

doi: 10.5943/sif/5/1/31
[12]

Krupodorova T, Sevindik M. 2020. Antioxidant potential and some mineral contents of wild edible mushroom Ramaria stricta. AgroLife Scientific Journal 9:186−91

[13]

Paloi S, Kumla J, Karunarathna SC, Lumyong S, Suwannarach N. 2023. Taxonomic and phylogenetic evidence reveal two new Russula species (Russulaceae, Russulales) from northern Thailand. Mycological Progress 22:72

doi: 10.1007/s11557-023-01921-5
[14]

Buyck B, Horak E, Cooper J, Wang X. 2023. Russula subgen. Cremeoochraceae subgen. nov.: a very small and ancient lineage sharing with Multifurca (Russulaceae) an identical, largely circum-Pacific distribution pattern. bioRxiv:Preprint

doi: 10.1101/2023.07.26.550279
[15]

Looney BP, Ryberg M, Hampe F, Sánchez-García M, Matheny PB. 2016. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi. Molecular Ecology 25:630−47

doi: 10.1111/mec.13506
[16]

Manz C, Adamčík S, Looney BP, Corrales A, Ovrebo C, et al. 2021. Four new species of Russula subsection Roseinae from tropical montane forests in western Panama. PLoS One 16:e0257616

doi: 10.1371/journal.pone.0257616
[17]

Wang SH, Li GJ, Phurbu D, He MQ, Zhang MZ, et al. 2024. Four new species of Russula from the Xizang Autonomous Region and other provinces of China. Mycology 15:210−37

doi: 10.1080/21501203.2023.2265667
[18]

Razaq A, Rajput AQ, Shahzad S. 2019. New records of Russula species from Pakistan. Pakistan Journal of Botany 51:255−58

doi: 10.30848/pjb2019-1(34)
[19]

Zhao S, Zhao Y, Li S, Zhang G, Wang H, et al. 2010. An antiproliferative ribonuclease from fruiting bodies of the wild mushroom Russula delica. Journal of Microbiology and Biotechnology 20:693−99

doi: 10.4014/jmb.0911.11022
[20]

Erel O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37:277−85

doi: 10.1016/j.clinbiochem.2003.11.015
[21]

Erel O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38:1103−11

doi: 10.1016/j.clinbiochem.2005.08.008
[22]

Sevindik M. 2021. Phenolic content, antioxidant and antimicrobial potential of Melanoleuca melaleuca edible mushroom. Journal of Animal and Plant Sciences 31:824−30

doi: 10.36899/japs.2021.3.0272
[23]

Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology 7:88−95

doi: 10.1016/0006-2952(61)90145-9
[24]

Kabaktepe Ş, Bal C, Eraslan EC, Gürgen A, Akata I, et al. 2025. Evaluation of bioactive potential of the ruby bolete Hortiboletus rubellus (Agaricomycetes): antioxidant, enzyme inhibition, and antiproliferative effects. International Journal of Medicinal Mushrooms 27:21−31

doi: 10.1615/IntJMedMushrooms.2025059728
[25]

Dulay RMR. 2023. Oudemansiella (Physalacriaceae) mushrooms: a status review on the distribution, cultivation, composition and bioactivity profile. Studies in Fungi 8:13

doi: 10.48130/SIF-2023-0013
[26]

Eraslan EC, Altuntas D, Baba H, Bal C, Akgül H, et al. 2021. Some biological activities and element contents of ethanol extract of wild edible mushroom Morchella esculenta. Sigma Journal of Engineering and Natural Sciences 39:24−28

[27]

Krupodorova T, Barshteyn V, Tsygankova V, Sevindik M, Blume Y. 2024. Strain-specific features of Pleurotus ostreatus growth in vitro and some of its biological activities. BMC Biotechnology 24:9

doi: 10.1186/s12896-024-00834-9
[28]

Morales D. 2024. Fomes fomentarius: an underexplored mushroom as source of bioactive compounds. Food Bioscience 61:104781

doi: 10.1016/j.fbio.2024.104781
[29]

Comlekcioglu U, Ozkose E, Akyol İ, Ekİncİ MS. 2010. Fatty acid analysis of anaerobic ruminal fungi Neocallimastix, Caecomyces and Orpinomyces. International Journal of Agriculture & Biology 12:635−37

[30]

Chen XH, Xia LX, Zhou HB, Qiu GZ. 2010. Chemical composition and antioxidant activities of Russula griseocarnosa sp. nov. Journal of Agricultural and Food Chemistry 58:6966−71

doi: 10.1021/jf1011775
[31]

Kostić M, Ivanov M, Fernandes Â, Pinela J, Calhelha RC, et al. 2020. Antioxidant extracts of three Russula genus species express diverse biological activity. Molecules 25:4336

doi: 10.3390/molecules25184336
[32]

Balkrishna A, Sharma N, Srivastava D, Chaudhary P, Arya V. 2024. Medicinal marvels: a comprehensive study at the nutritional and therapeutic potential of Russula mushrooms. Current Research in Environmental & Applied Mycology (Journal of Fungal Biology) 14:71−88

doi: 10.5943/cream/14/1/4
[33]

Karaltı İ, Eraslan EC, Sarıdoğan BGÖ, Akata I, Sevindik M. 2022. Total antioxidant, antimicrobial, antiproliferative potentials and element contents of wild mushroom Candolleomyces candolleanus (Agaricomycetes) from Turkey. International Journal of Medicinal Mushrooms 24:69−76

[34]

Gürgen A, Unal O, Sevindik M. 2024. Biological activities of the golden chantarelle mushroom Cantharellus cibarius (Agaricomycetes) extracts obtained as a result of single and multi-objective optimization studies. International Journal of Medicinal Mushrooms 26:63−74

[35]

Sevindik M, Gürgen A, Khassanov VT, Bal C. 2024. Biological activities of ethanol extracts of Hericium erinaceus obtained as a result of optimization analysis. Foods 13:1560

doi: 10.3390/foods13101560
[36]

Gürgen A, Sevindik M. 2025. Single and multi-objective optimization of the red pine mushroom Lactarius deliciosus (Agaricomycetes) extraction conditions using artificial intelligence methods and biological activities of optimized extracts. International Journal of Medicinal Mushrooms 27:59−73

doi: 10.1615/IntJMedMushrooms.2024057054
[37]

Sevindik M, Bal C, Krupodorova T, Gürgen A, Eraslan EC. 2025. Extract optimization and biological activities of Otidea onotica using Artificial Neural Network-Genetic Algorithm and response surface methodology techniques. BMC Biotechnology 25:25

doi: 10.1186/s12896-025-00960-y
[38]

Ünal O, Gürgen A, Krupodorova T, Sevindik M, Kabaktepe Ş, et al. 2025. Optimization of Phellinus hartigii extracts: biological activities, and phenolic content analysis. BMC Complementary Medicine and Therapies 25:113

doi: 10.1186/s12906-025-04851-9
[39]

Gürgen A, Sevindik M. 2022. Application of artificial neural network coupling multiobjective particle swarm optimization algorithm to optimize Pleurotus ostreatus extraction parameters. Journal of Food Processing and Preservation 46:e16949

doi: 10.1111/jfpp.16949
[40]

Sepčić K, Sabotič J, Ohm RA, Drobne D, Jemec Kokalj A. 2019. First evidence of cholinesterase-like activity in basidiomycota. PLoS One 14:e0216077

doi: 10.1371/journal.pone.0216077
[41]

Garrab M, Edziri H, El Mokni R, Mastouri M, Mabrouk H, et al. 2019. Phenolic composition, antioxidant and anticholinesterase properties of the three mushrooms Agaricus silvaticus Schaeff., Hydnum rufescens Pers. and Meripilus giganteus (Pers.) Karst. in Tunisia. South African Journal of Botany 124:359−63

doi: 10.1016/j.sajb.2019.05.033
[42]

Wei YM, Yang L, Wang H, Cai CH, Chen ZB, et al. 2022. Triterpenoids as bivalent and dual inhibitors of acetylcholinesterase/butyrylcholinesterase from the fruiting bodies of Inonotus obliquus. Phytochemistry 200:113182

doi: 10.1016/j.phytochem.2022.113182
[43]

Yoon KN, Lee TS. 2015. In vitro antioxidant, anti-hyperglycemic, anti-cholinesterase, and inhibition of nitric oxide production activities of methanol and hot water extracts of Russula rosacea mushroom. Journal of Mushroom 13:1−10

doi: 10.14480/JM.2015.13.1.1
[44]

Alkan S, Uysal A, Kasik G, Vlaisavljevic S, Berežni S, et al. 2020. Chemical characterization, antioxidant, enzyme inhibition and antimutagenic properties of eight mushroom species: a comparative study. Journal of Fungi 6:166

doi: 10.3390/jof6030166
[45]

Yang L, Wen KS, Ruan X, Zhao YX, Wei F, et al. 2018. Response of plant secondary metabolites to environmental factors. Molecules 23:762

doi: 10.3390/molecules23040762
[46]

Bye LJ, Finol-Urdaneta RK, Tae HS, Adams DJ. 2023. Nicotinic acetylcholine receptors: key targets for attenuating neurodegenerative diseases. The International Journal of Biochemistry & Cell Biology 157:106387

doi: 10.1016/j.biocel.2023.106387
[47]

Zaidman BZ, Yassin M, Mahajna J, Wasser SP. 2005. Medicinal mushroom modulators of molecular targets as cancer therapeutics. Applied Microbiology and Biotechnology 67:453−68

doi: 10.1007/s00253-004-1787-z
[48]

Wasser SP. 2017. Medicinal mushrooms in human clinical studies. Part I. Anticancer, oncoimmunological, and immunomodulatory activities: a review. International Journal of Medicinal Mushrooms 19:279−317

doi: 10.1615/IntJMedMushrooms.v19.i4.10
[49]

Khatua S, Sen Gupta S, Ghosh M, Tripathi S, Acharya K. 2021. Exploration of nutritional, antioxidative, antibacterial and anticancer status of Russula alatoreticula: towards valorization of a traditionally preferred unique myco-food. Journal of Food Science and Technology 58:2133−47

doi: 10.1007/s13197-020-04723-9