[1]

Liu XD, Zhang Y, Wu MH, Ma ZG, Cao H. 2021. Textual research of Schizonepetae Herba and Schizonepetae Spica. China Journal of Chinese Materia Medica 46:5144−51 (in Chinese)

doi: 10.19540/j.cnki.cjcmm.20210707.102
[2]

Shi J, Cui Y, Zhang J, Sun L, Tang X. 2023. Transcriptomics reveals the molecular basis for methyl jasmonate to promote the synthesis of monoterpenoids in Schizonepeta tenuifolia briq. Current Issues in Molecular Biology 45:2738−56

doi: 10.3390/cimb45040179
[3]

Liu L, Yin M, Lin G, Wang Q, Zhou P, et al. 2021. Integrating RNA-seq with functional expression to analyze the regulation and characterization of genes involved in monoterpenoid biosynthesis in Nepeta tenuifolia Briq. Plant Physiology and Biochemistry 167:31−41

doi: 10.1016/j.plaphy.2021.07.026
[4]

Liu X, Huang Z, Zhang J, Zhou Y, Zhang Y, et al. 2021. Comparisons of the anti-inflammatory, antiviral, and hemostatic activities and chemical profiles of raw and charred Schizonepetae Spica. Journal of Ethnopharmacology 278:114275

doi: 10.1016/j.jep.2021.114275
[5]

Srividya N, Lange I, Richter JK, Wüst M, Lange BM. 2022. Selectivity of enzymes involved in the formation of opposite enantiomeric series of p-menthane monoterpenoids in peppermint and Japanese catnip. Plant Science 314:111119

doi: 10.1016/j.plantsci.2021.111119
[6]

Zhao X, Zhou M. 2022. Review on chemical constituents of Schizonepeta tenuifolia briq. and their pharmacological effects. Molecules 27:5249

doi: 10.3390/molecules27165249
[7]

Rong N, Huang L, Ye P, Pan H, Hu M, et al. 2024. CgLS mediates limonene synthesis of main essential oil component in secretory cavity cells of Citrus grandis 'Tomentosa' fruits. International Journal of Biological Macromolecules 280:135671

doi: 10.1016/j.ijbiomac.2024.135671
[8]

Bergman ME, Davis B, Phillips MA. 2019. Medically useful plant terpenoids: biosynthesis, occurrence, and mechanism of action. Molecules 24:3961

doi: 10.3390/molecules24213961
[9]

Liu C, Smit SJ, Dang J, Zhou P, Godden GT, et al. 2023. A chromosome-level genome assembly reveals that a bipartite gene cluster formed via an inverted duplication controls monoterpenoid biosynthesis in Schizonepeta tenuifolia. Molecular Plant 16:533−48

doi: 10.1016/j.molp.2023.01.004
[10]

Lee GW, Chung MS, Kang M, Chung BY, Lee S. 2016. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. Protoplasma 253:683−90

doi: 10.1007/s00709-015-0904-4
[11]

Chong WM, Hsu SC, Kao WT, Lo CW, Lee KY, et al. 2016. Phosphoproteomics identified an NS5A phosphorylation site involved in hepatitis C virus replication. Journal of Biological Chemistry 291:3918−31

doi: 10.1074/jbc.M115.675413
[12]

Schiff WH, Oprian DD. 2023. Mutational analysis of (+)-limonene synthase. Biochemistry 62:2472−79

doi: 10.1021/acs.biochem.3c00217
[13]

Turner G, Gershenzon J, Nielson EE, Froehlich JE, Croteau R. 1999. Limonene synthase, the enzyme responsible for monoterpene biosynthesis in peppermint, is localized to leucoplasts of oil gland secretory cells. Plant Physiology 120:879−86

doi: 10.1104/pp.120.3.879
[14]

Liu C, Srividya N, Parrish AN, Yue W, Shan M, et al. 2018. Morphology of glandular trichomes of Japanese catnip (Schizonepeta tenuifolia Briquet) and developmental dynamics of their secretory activity. Phytochemistry 150:23−30

doi: 10.1016/j.phytochem.2018.02.018
[15]

Qamar N, Pandey M, Vasudevan M, Kumar A, Shasany AK. 2022. Glandular trichome specificity of menthol biosynthesis pathway gene promoters from Mentha × piperita. Planta 256:110

doi: 10.1007/s00425-022-04029-4
[16]

Wang X, Liang Y, Shu J, Jia C, Li Q, et al. 2024. Transcription factor StWRKY1 is involved in monoterpene biosynthesis induced by light intensity in Schizonepeta tenuifolia Briq. Plant Physiology and Biochemistry 214:108871

doi: 10.1016/j.plaphy.2024.108871
[17]

Roy S. 2016. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signaling & Behavior 11:e1117723

doi: 10.1080/15592324.2015.1117723
[18]

Qian F, Zhao QQ, Zhou JX, Yuan DY, Liu ZZ, et al. 2024. The GTE4-EML chromatin reader complex concurrently recognizes histone acetylation and H3K4 trimethylation in Arabidopsis. The Plant Cell 37:koae330

doi: 10.1093/plcell/koae330
[19]

Kusunoki K, Yamamoto YY. 2017. Plant promoter database (PPDB). Methods in Molecular Biology 1533:299−314

doi: 10.1007/978-1-4939-6658-5_18
[20]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[21]

Nakashima K, Jan A, Todaka D, Maruyama K, Goto S, et al. 2014. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta 239:47−60

doi: 10.1007/s00425-013-1960-7
[22]

Zhou P, Dang J, Shi Z, Shao Y, Sang M, et al. 2022. Identification and characterization of a novel gene involved in glandular trichome development in Nepeta tenuifolia. Frontiers in Plant Science 13:936244

doi: 10.3389/fpls.2022.936244
[23]

Dhingra AK, Chopra B. 2023. Pulegone: an emerging oxygenated cyclic monoterpene ketone scaffold delineating synthesis, chemical reactivity, and biological potential. Recent Advances in Anti-Infective Drug Discovery 18:16−28

doi: 10.2174/2772434418666221018090507
[24]

Tholl D. 2015. Biosynthesis and biological functions of terpenoids in plants. Biotechnology of Isoprenoids 148:63−106

doi: 10.1007/10_2014_295
[25]

Hilfiger L, Triaux Z, Marcic C, Héberlé E, Emhemmed F, et al. 2021. Anti-hyperalgesic properties of menthol and pulegone. Frontiers in Pharmacology 12:753873

doi: 10.3389/fphar.2021.753873
[26]

Meraj TA, Fu J, Raza MA, Zhu C, Shen Q, et al. 2020. Transcriptional factors regulate plant stress responses through mediating secondary metabolism. Genes 11:346

doi: 10.3390/genes11040346
[27]

Wang S, Shi M, Zhang Y, Pan Z, Xie X, et al. 2022. The R2R3-MYB transcription factor FaMYB63 participates in regulation of eugenol production in strawberry. Plant Physiology 188:2146−65

doi: 10.1093/plphys/kiac014
[28]

Cao R, Lv B, Shao S, Zhao Y, Yang M, et al. 2024. The SmMYC2−SmMYB36 complex is involved in methyl jasmonate-mediated tanshinones biosynthesis in Salvia miltiorrhiza. Plant Journal 119:746−61

doi: 10.1111/tpj.16793
[29]

Zeng Y, Li Z, Chen Y, Li W, Wang HB, et al. 2023. Global dissection of R2R3-MYB in Pogostemon cablin uncovers a species-specific R2R3-MYB clade. Genomics 115:110643

doi: 10.1016/j.ygeno.2023.110643
[30]

Song X, Yang Q, Liu Y, Li J, Chang X, et al. 2021. Genome-wide identification of Pistacia R2R3-MYB gene family and function characterization of PcMYB113 during autumn leaf coloration in Pistacia chinensis. International Journal of Biological Macromolecules 192:16−27

doi: 10.1016/j.ijbiomac.2021.09.092
[31]

Man J, Shi Y, Huang Y, Zhang X, Wang X, et al. 2023. PnMYB4 negatively modulates saponin biosynthesis in Panax notoginseng through interplay with PnMYB1. Horticulture Research 10:uhad134

doi: 10.1093/hr/uhad134
[32]

Zhao Y, Zhang G, Tang Q, Song W, Gao Q, et al. 2022. EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in Erigeron breviscapus. Frontiers in Plant Science 13:946827

doi: 10.3389/fpls.2022.946827
[33]

Yue M, Jiang L, Zhang N, Zhang L, Liu Y, et al. 2023. Regulation of flavonoids in strawberry fruits by FaMYB5/FaMYB10 dominated MYB-bHLH-WD40 ternary complexes. Frontiers in Plant Science 14:1145670

doi: 10.3389/fpls.2023.1145670
[34]

Hossain MR, Kim HT, Shanmugam A, Nath UK, Goswami G, et al. 2018. Expression profiling of regulatory and biosynthetic genes in contrastingly anthocyanin rich strawberry (Fragaria × ananassa) cultivars reveals key genetic determinants of fruit color. International Journal of Molecular Sciences 19:656

doi: 10.3390/ijms19030656
[35]

Han J, Li T, Wang X, Zhang X, Bai X, et al. 2022. AmMYB24 regulates floral terpenoid biosynthesis induced by blue light in snapdragon flowers. Frontiers in Plant Science 13:885168

doi: 10.3389/fpls.2022.885168
[36]

Wang X, Niu Y, Zheng Y. 2021. Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences 22:6125

doi: 10.3390/ijms22116125
[37]

Zhang J, Wang L, Wu D, Zhao H, Gong L, et al. 2024. Regulation of SmEXPA13 expression by SmMYB1R1-L enhances salt tolerance in Salix matsudana Koidz. International Journal of Biological Macromolecules 270:132292

doi: 10.1016/j.ijbiomac.2024.132292
[38]

Liu H, He W, Yao X, Yan X, Wang X, et al. 2023. The light- and jasmonic acid-induced AaMYB108-like positive regulates the initiation of glandular secretory trichome in Artemisia annua L. International Journal of Molecular Sciences 24:12929

doi: 10.3390/ijms241612929
[39]

Liu H, Li L, Fu X, Li Y, Chen T, et al. 2023. AaMYB108 is the core factor integrating light and jasmonic acid signaling to regulate artemisinin biosynthesis in Artemisia annua. New Phytologist 237:2224−37

doi: 10.1111/nph.18702
[40]

Kayani SI, Ma Y, Fu X, Shen Q, Li Y, et al. 2023. JA-regulated AaGSW1-AaYABBY5/AaWRKY9 complex regulates artemisinin biosynthesis in Artemisia annua. Plant & Cell Physiology 64:771−85

doi: 10.1093/pcp/pcad035