[1]

Phillips DR, Gersbach NB. 1989. Factors influencing petiole spotting (gomasho) in Chinese cabbage. Acta Horticulturae 247:117−21

doi: 10.17660/actahortic.1989.247.19
[2]

Yang XY, Zhang SX, Zhang QX, Wang DC, Gao XR, et al. 2006. The Effects of Gene Type on the Occurrence of Petiole Spot in Chinese Cabbage and Resistance Varieties Screening. Northern Horticulture 6:25−26 (in Chinese)

doi: 10.3969/j.issn.1001-0009.2006.06.011
[3]

Jimenez M, Laemmlen F, Nie X, Rubatzky V, Cantwell MI. 1998. Chinese cabbage cultivars vary in susceptibility to postharvest development of black speck. Acta Horticulturae 467:363−70

doi: 10.17660/ActaHortic.1998.467.41
[4]

Guo Y, Yang XY, Si CG, Zhang SX, Zhang QX, et al. 2011. Effects of different ratios of NO3-N: NH4+-N on black sesame spot in Chinese cabbage. Acta Horticulturae 38:1489−97 (in Chinese)

doi: 10.16420/j.issn.0513-353x.2011.08.001
[5]

Liu D, Yang XY, Wang Y, Si CG, Zhang SX, et al. 2010. Effects of various nitrogen levels on petiole spot in Chinese cabbage. Chinese Agricultural ence Bulletin 11:303−7 (in Chinese)

[6]

Chen QW, Yang XY, Luo QX, Zang S, Zhang SX, et al. 2014. Effects of Copper on Black Sesame Spot and Total Phenol Content in Chinese Cabbage. China Vegetables 1:43 (in Chinese)

doi: 10.3969/j.issn.1000-6346.2014.05.008
[7]

Matsumoto M. 1988. Studies on the occurrence of goma-sho of Chinese cabbage and its prevention. Journal of the Japanese Society for Horticultural Science 57:206−14

doi: 10.2503/jjshs.57.206
[8]

Daly P, Tomkins B. 1997. Production and postharvest handling of Chinese cabbage. Rural Industries Research Development Corporation, Barton ACT, Australia, RIRDC Research Paper 97:1−40

[9]

Tan SC, Haynes YS, Phillips DR. 2005. Post-harvest handling of Brassica vegetables. Farmnote. No. 44/94. Perth, Australia: Department of Agriculture-Government of Western Australia.

[10]

Yu YZ, Chen ZD, Li DQ. 2007. Effects of nitrogen forms on the physiological metabolism of Chinese cabbage varieties resisted to petiole spot. Shandong Agricultural Sciences 3:79−82 (in Chinese)

doi: 10.3969/j.issn.1001-4942.2007.03.027
[11]

Mei Y, Lei J, Liu W, Yue Z, Hu Q, et al. 2024. Transcriptomic and proteomic analyses unveil the role of nitrogen metabolism in the formation of Chinese cabbage petiole spot. International Journal of Molecular Sciences 25:1366

doi: 10.3390/ijms25031366
[12]

Hasanuzzaman M, Nahar K, Alam MM, Ahmad S, Fujita M. 2015. Exogenous application of phytoprotectants in legumes against environmental stress. In Legumes under Environmental Stress: Yield, Improvement and Adaptations, eds. Azooz MM, Ahmad P. USA: John Wiley Sons, Ltd. pp.161−97 doi: 10.1002/9781118917091.ch11

[13]

Ali S, Tyagi A, Bae H. 2023. ROS interplay between plant growth and stress biology: challenges and future perspectives. Plant Physiology Biochemistry 203:108032

doi: 10.1016/j.plaphy.2023.108032
[14]

Mittler R, Zandalinas SI, Fichman Y, Van Breusegem F. 2022. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology 23:663−79

doi: 10.1038/s41580-022-00499-2
[15]

Yang XY, Zhang SX, Zhang QX, Wang DC, Gao XR, et al. 2006. Primary studies on the effects of nitrogen fertilizer on the occurrence of petiole spot in Chinese cabbage. Acta Agriculturae Boreali-Sinica 1:151−53 (in Chinese)

doi: 10.3321/j.issn:1000-7091.2006.z1.036
[16]

Kim D, Langmead B, Salzberg SL. 2015. HISAT: a fast spliced aligner with low memory requirements. Nature Methods 12:357−60

doi: 10.1038/nmeth.3317
[17]

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, et al. 2015. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33:290−95

doi: 10.1038/nbt.3122
[18]

Lyublinskaya OG, Ivanova JS, Pugovkina NA, Kozhukharova IV, Kovaleva ZV, et al. 2017. Redox environment in stem and differentiated cells: a quantitative approach. Redox Biology 12:758−69

doi: 10.1016/j.redox.2017.04.016
[19]

Su T, Wang W, Li P, Zhang B, Li P, et al. 2018. A genomic variation map provides insights into the genetic basis of spring Chinese cabbage (Brassica rapa ssp. pekinensis) selection. Molecular Plant Breeding 11:1360−76

doi: 10.1016/j.molp.2018.08.006
[20]

Wang T, Liu S, Tian S, Ma T, Wang W. 2022. Light regulates chlorophyll biosynthesis via ELIP1 during the storage of Chinese cabbage. Scientific Reports 12:11098

doi: 10.1038/s41598-022-15451-9
[21]

Li H, Tang C, Xu Z, Liu X, Han X. 2012. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). Journal of Agricultural Science 4:262−73

doi: 10.5539/jas.v4n4p262
[22]

Warner J, Cerkauskas R, Zhang T, Hao X. 2003. Response of Chinese cabbage cultivars to petiole spotting and bacterial soft rot. HortTechnology 13:190−95

doi: 10.21273/horttech.13.1.0190
[23]

Liu M, Wu F, Wang S, Lu Y, Chen X, et al. 2019. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. Horticulture Research 6:68

doi: 10.1038/s41438-019-0149-z
[24]

Li X, Ren X, Ibrahim E, Kong H, Wang M, et al. 2024. Response of Chinese cabbage (Brassica rapa subsp. pekinensis) to bacterial soft rot infection by change of soil microbial community in root zone. Frontiers in Microbiology 15:1401896

doi: 10.3389/fmicb.2024.1401896
[25]

Tian M, Zhang L, Li R, Zhang H. 2024. Mapping-based localization of blackleg-resistant candidate genes of Chinese cabbage (Brassica rapa). Plant disease 108:3063−71

doi: 10.1094/PDIS-01-24-0194-RE
[26]

Wu Y, Zhao C, Zhang Y, Shen C, Zhang Y, et al. 2025. Inactivation of β-1, 3-glucan synthase-like 5 confers broad-spectrum resistance to Plasmodiophora brassicae pathotypes in cruciferous plants. Nature Genetics 57:2302−12

doi: 10.1038/s41588-025-02306-y
[27]

Su T, Li P, Wang H, Wang W, Zhao X, et al. 2019. Natural variation in a calreticulin gene causes reduced resistance to Ca2+ deficiency-induced tipburn in Chinese cabbage (Brassica rapa ssp. pekinensis). Plant, Cell & Environment 42:3044−60

doi: 10.1111/pce.13612
[28]

Yuan J, Shen C, Chen R, Qin Y, Li S, et al. 2025. BrCNGC12 and BrCNGC16 mediate Ca2+ absorption and transport to enhance resistance to tipburn in Chinese cabbage. Plant Biotechnology Journal 23:2871−87

doi: 10.1111/pbi.70113
[29]

Audran C, Liotenberg S, Gonneau M, North H, Frey A, et al. 2001. Localisation and expression of zeaxanthin epoxidase mRNA in Arabidopsis in response to drought stress and during seed development. Australian Journal of Plant Physiology 28:1161−73

doi: 10.1071/pp00134
[30]

Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, et al. 2001. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. The Plant Journal 27:325−33

doi: 10.1046/j.1365-313x.2001.01096.x
[31]

Tan BC, Joseph LM, Deng WT, Liu L, Li QB, et al. 2003. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. The Plant Journal 35:44−56

doi: 10.1046/j.1365-313X.2003.01786.x
[32]

Andrási N, Pettkó-Szandtner A, Szabados L. 2021. Diversity of plant heat shock factors: regulation, interactions, and functions. Journal of Experimental Botany 72:1558−75

doi: 10.1093/jxb/eraa576
[33]

Tiwari M, Kumar R, Min D, Krishna Jagadish SV. 2022. Genetic and molecular mechanisms underlying root architecture and function under heat stress—a hidden story. Plant, Cell & Environment 45:771−88

doi: 10.1111/pce.14266
[34]

Liu Q, Ye X, Zhao Z, Li Q, Wei C, et al. 2024. Progress of ABA function in endosperm cellularization and storage product accumulation. Plant Cell Reports 43:287

doi: 10.1007/s00299-024-03378-6
[35]

Yoshida T, Christmann A, Yamaguchi-Shinozaki K, Grill E, Fernie AR. 2019. Revisiting the basal role of ABA − roles outside of stress. Trends in Plant Science 24:625−35

doi: 10.1016/j.tplants.2019.04.008
[36]

Humplík JF, Bergougnoux V, Van Volkenburgh E. 2017. To stimulate or inhibit? That is the question for the function of abscisic acid. Trends in Plant Science 22:830−41

doi: 10.1016/j.tplants.2017.07.009
[37]

Brookbank BP, Patel J, Gazzarrini S, Nambara E. 2021. Role of basal ABA in plant growth and development. Genes 12:1936

doi: 10.3390/genes12121936
[38]

Sun L, Sun Y, Zhang M, Wang L, Ren J, et al. 2012. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato. Plant Physiology 158:283−98

doi: 10.1104/pp.111.186866
[39]

Wang Y, Wang Y, Ji K, Dai S, Hu Y, et al. 2013. The role of abscisic acid in regulating cucumber fruit development and ripening and its transcriptional regulation. Plant Physiology and Biochemistry 64:70−79

doi: 10.1016/j.plaphy.2012.12.015
[40]

Thakur R, Pristijono P, Bowyer M, Singh SP, Scarlett CJ, et al. 2019. A starch edible surface coating delays banana fruit ripening. LWT 100:341−47

doi: 10.1016/j.lwt.2018.10.055
[41]

Romero P, Lafuente MT. 2021. The combination of abscisic acid (ABA) and water stress regulates the epicuticular wax metabolism and cuticle properties of detached citrus fruit. International Journal of Molecular Sciences 22:10242

doi: 10.3390/ijms221910242
[42]

Bartels D, Sunkar R. 2005. Drought and salt tolerance in plants. Critical Reviews in Plant Sciences 24:23−58

doi: 10.1080/07352680590910410
[43]

Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58:221−27

doi: 10.1093/jxb/erl164
[44]

Maghoumi M, Fatchurrahman D, Amodio ML, Quinto M, Cisneros-Zevallos L, et al. 2023. Is pomegranate husk scald during storage induced by water loss and mediated by ABA signaling? Journal of the Science of Food and Agriculture 103:2914−25

doi: 10.1002/jsfa.12385
[45]

Nadarajah KK. 2020. ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences 21:5208

doi: 10.3390/ijms21155208
[46]

Liu C, Mao B, Yuan D, Chu C, Duan M. 2022. Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal 10:13−25

doi: 10.1016/j.cj.2021.02.010
[47]

Asad MAU, Zakari SA, Zhao Q, Zhou L, Ye Y, et al. 2019. Abiotic stresses intervene with ABA signaling to induce destructive metabolic pathways leading to death: premature leaf senescence in plants. International Journal of Molecular Sciences 20:256

doi: 10.3390/ijms20020256
[48]

Marino D, Dunand C, Puppo A, Pauly N. 2012. A burst of plant NADPH oxidases. Trends in Plant Science 17:9−15

doi: 10.1016/j.tplants.2011.10.001
[49]

Devireddy AR, Zandalinas SI, Fichman Y, Mittler R. 2021. Integration of reactive oxygen species and hormone signaling during abiotic stress. The Plant Journal 105:459−76

doi: 10.1111/tpj.15010
[50]

Mittler R, Blumwald E. 2015. The roles of ROS and ABA in systemic acquired acclimation. The Plant Cell 27:64−70

doi: 10.1105/tpc.114.133090
[51]

Lou D, Wang H, Liang G, Yu D. 2017. OsSAPK2 confers abscisic acid sensitivity and tolerance to drought stress in rice. Frontiers in plant science 8:993

doi: 10.3389/fpls.2017.00993
[52]

Zhao Q, Guan X, Zhou L, Asad MAU, Xu Y, et al. 2023. ABA-triggered ROS burst in rice developing anthers is critical for tapetal programmed cell death induction and heat stress-induced pollen abortion. International Journal of Molecular Sciences Plant, Cell & Environment 46:1453−71

doi: 10.1111/pce.14551
[53]

Lee J, Kim J, Choi JP, Lee M, Kim MK, et al. 2016. Intracellular Ca2+ and K+ concentration in Brassica oleracea leaf induces differential expression of transporter and stress-related genes. BMC Genomics 17:211

doi: 10.1186/s12864-016-2512-x