[1]

Kang S, Kim S, Ha S, Lee C, Nam S. 2016. Biochemical components and physiological activities of ice plant (Mesembryanthemum crystallinum). Journal of the Korean Society of Food Science and Nutrition 45:1732−39

doi: 10.3746/jkfn.2016.45.12.1732
[2]

Zhang C, Wu W, Xin X, Li X, Liu D. 2019. Extract of ice plant (Mesembryanthemum crystallinum) ameliorates hyperglycemia and modulates the gut microbiota composition in type 2 diabetic Goto-Kakizaki rats. Food & Function 10:3252−61

doi: 10.1039/c9fo00119k
[3]

Drira R, Matsumoto T, Agawa M, Sakamoto K. 2016. Ice plant (Mesembryanthemum crystallinum) extract promotes lipolysis in mouse 3T3-L1 adipocytes through extracellular signal-regulated kinase activation. Journal of Medicinal Food 19:274−80

doi: 10.1089/jmf.2015.3470
[4]

Loconsole D, Murillo-Amador B, Cristiano G, De Lucia B. 2019. Halophyte common ice plants: a future solution to arable land salinization. Sustainability 11:6076

doi: 10.3390/su11216076
[5]

Xia J, Mattson N. 2022. Response of common ice plant (Mesembryanthemum crystallinum L.) to sodium chloride concentration in hydroponic nutrient solution. HortScience 57:750−56

doi: 10.21273/hortsci16246-22
[6]

Shen S, Li N, Wang Y, Zhou R, Sun P, et al. 2022. High-quality ice plant reference genome analysis provides insights into genome evolution and allows exploration of genes involved in the transition from C3 to CAM pathways. Plant Biotechnology Journal 20:2107−22

doi: 10.1111/pbi.13892
[7]

Shahid SA, Zaman M, Heng L. 2018. Soil salinity: historical perspectives and a world overview of the problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. Cham: Springer International Publishing. pp. 43−53 doi: 10.1007/978-3-319-96190-3_2

[8]

Van Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annual Review of Plant Biology 71:403−33

doi: 10.1146/annurev-arplant-050718-100005
[9]

Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, et al. 2020. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences 21:148

doi: 10.3390/ijms21010148
[10]

Mao K, Dong Q, Li C, Liu C, Ma F. 2017. Genome wide identification and characterization of apple bHLH transcription factors and expression analysis in response to drought and salt stress. Frontiers in Plant Science 8:480

doi: 10.3389/fpls.2017.00480
[11]

Toledo-Ortiz G, Huq E, Quail PH. 2003. The Arabidopsis basic/helix-loop-helix transcription factor family. The Plant Cell 15:1749−70

doi: 10.1105/tpc.013839
[12]

Yin J, Chang X, Kasuga T, Bui M, Reid MS, et al. 2015. A basic helix-loop-helix transcription factor, PhFBH4, regulates flower senescence by modulating ethylene biosynthesis pathway in Petunia. Horticulture Research 2:15059

doi: 10.1038/hortres.2015.59
[13]

Carretero-Paulet L, Galstyan A, Roig-Villanova I, Martínez-García JF, Bilbao-Castro JR, et al. 2010. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in Arabidopsis, poplar, rice, moss, and algae. Plant Physiology 153:1398−412

doi: 10.1104/pp.110.153593
[14]

Atchley WR, Terhalle W, Dress A. 1999. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. Journal of Molecular Evolution 48:501−16

doi: 10.1007/PL00006494
[15]

Pires N, Dolan L. 2010. Origin and diversification of basic-helix-loop-helix proteins in plants. Molecular Biology and Evolution 27:862−74

doi: 10.1093/molbev/msp288
[16]

Szécsi J, Joly C, Bordji K, Varaud E, Cock JM, et al. 2006. BIGPETALp, a bHLH transcription factor is involved in the control of Arabidopsis petal size. The EMBO Journal 25:3912−20

doi: 10.1038/sj.emboj.7601270
[17]

Xu J, Ding Z, Vizcay-Barrena G, Shi J, Liang W, et al. 2014. ABORTED MICROSPORES Acts as a master regulator of pollen wall formation in Arabidopsis. The Plant Cell 26:1544−56

doi: 10.1105/tpc.114.122986
[18]

Huq E, Quail PH. 2002. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. The EMBO Journal 21:2441−50

doi: 10.1093/emboj/21.10.2441
[19]

Abe H, Urao T, Ito T, Seki M, Shinozaki K, et al. 2003. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15:63−78

doi: 10.1105/tpc.006130
[20]

Le Hir R, Castelain M, Chakraborti D, Moritz T, Dinant S, et al. 2017. AtbHLH68 transcription factor contributes to the regulation of ABA homeostasis and drought stress tolerance in Arabidopsis thaliana. Physiologia Plantarum 160:312−27

doi: 10.1111/ppl.12549
[21]

Kim J, Kim HY. 2006. Functional analysis of a calcium-binding transcription factor involved in plant salt stress signaling. FEBS Letters 580:5251−56

doi: 10.1016/j.febslet.2006.08.050
[22]

Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, et al. 2003. ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development 17:1043−54

doi: 10.1101/gad.1077503
[23]

Lau OS, Song Z, Zhou Z, Davies KA, Chang J, et al. 2018. Direct control of SPEECHLESS by PIF4 in the high-temperature response of stomatal development. Current Biology 28:1273−1280.e3

doi: 10.1016/j.cub.2018.02.054
[24]

Takahashi Y, Ebisu Y, Kinoshita T, Doi M, Okuma E, et al. 2013. bHLH transcription factors that facilitate K+Uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Science Signaling 6:ra48

doi: 10.1126/scisignal.2003760
[25]

Liang J, Fang Y, An C, Yao Y, Wang X, et al. 2023. Genome-wide identification and expression analysis of the bHLH gene family in passion fruit (Passiflora edulis) and its response to abiotic stress. International Journal of Biological Macromolecules 225:389−403

doi: 10.1016/j.ijbiomac.2022.11.076
[26]

Chen C, Wu Y, Li J, Wang X, Zeng Z, et al. 2023. TBtools-II: a 'one for all, all for one' bioinformatics platform for biological big-data mining. Molecular Plant 16:1733−42

doi: 10.1016/j.molp.2023.09.010
[27]

Chou KC, Shen HB. 2010. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization. PLoS One 5:e11335

doi: 10.1371/journal.pone.0011335
[28]

Horton P, Park KJ, Obayashi T, Fujita N, Harada H, et al. 2007. WoLF PSORT: protein localization predictor. Nucleic Acids Research 35:W585−W587

doi: 10.1093/nar/gkm259
[29]

Chen L, Tan X, Ming R, Huang D, Tan Y, et al. 2024. Genome-wide identification of the bHLH gene family in Callerya speciosa reveals its potential role in the regulation of isoflavonoid biosynthesis. International Journal of Molecular Sciences 25:11900

doi: 10.3390/ijms252211900
[30]

Chen H, Song X, Shang Q, Feng S, Ge W. 2022. CFVisual: an interactive desktop platform for drawing gene structure and protein architecture. BMC Bioinformatics 23:178

doi: 10.1186/s12859-022-04707-w
[31]

Letunic I, Bork P. 2024. Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research 52:W78−W82

doi: 10.1093/nar/gkae268
[32]

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772−80

doi: 10.1093/molbev/mst010
[33]

Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, et al. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37:1530−34

doi: 10.1093/molbev/msaa015
[34]

Cao J, Li X, Lv Y, Ding L. 2015. Comparative analysis of the phytocyanin gene family in 10 plant species: a focus on Zea mays. Frontiers in Plant Science 6:515

doi: 10.3389/fpls.2015.00515
[35]

Chen K, Durand D, Farach-Colton M. 2000. Notung: dating gene duplications using gene family trees. In Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, Tokyo, Japan. ACM. pp. 96−106 doi: 10.1145/332306.332351

[36]

Wang Y, Tang H, DeBarry JD, Tan X, Li J, et al. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research 40:e49

doi: 10.1093/nar/gkr1293
[37]

Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, et al. 2002. PlantCARE, a database of plant Cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research 30:325−27

doi: 10.1093/nar/30.1.325
[38]

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, et al. 2019. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47:D607−D613

doi: 10.1093/nar/gky1131
[39]

Kong W, Yoo MJ, Zhu D, Noble JD, Kelley TM, et al. 2020. Molecular changes in Mesembryanthemum crystallinum guard cells underlying the C3 to CAM transition. Plant Molecular Biology 103:653−67

doi: 10.1007/s11103-020-01016-9
[40]

Oh DH, Barkla BJ, Vera-Estrella R, Pantoja O, Lee SY, et al. 2015. Cell type-specific responses to salinity–the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum. New Phytologist 207:627−44

doi: 10.1111/nph.13414
[41]

Yan T, Shu X, Ning C, Li Y, Wang Z, et al. 2024. Functions and regulatory mechanisms of bHLH transcription factors during the responses to biotic and abiotic stresses in woody plants. Plants 13:2315

doi: 10.3390/plants13162315
[42]

Feller A, Machemer K, Braun EL, Grotewold E. 2011. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal 66:94−116

doi: 10.1111/j.1365-313X.2010.04459.x
[43]

Yu L, Fei C, Wang D, Huang R, Xuan W, et al. 2023. Genome-wide identification, evolution and expression profiles analysis of bHLH gene family in Castanea mollissima. Frontiers in Genetics 14:1193953

doi: 10.3389/fgene.2023.1193953
[44]

Wang X, Gowik U, Tang H, Bowers JE, Westhoff P, Paterson AH. 2009. Comparative genomic analysis of C4 photosynthetic pathway evolution in grasses. Genome Biology 10:R68

doi: 10.1186/gb-2009-10-6-r68
[45]

Shao ZQ, Zhang YM, Hang YY, Xue JY, Zhou GC, et al. 2014. Long-term evolution of nucleotide-binding site-leucine-rich repeat genes: understanding gained from and beyond the legume family. Plant Physiology 166:217−34

doi: 10.1104/pp.114.243626
[46]

Chen H, Xu G, Ge W, Feng S, Lin Y, et al. 2024. CyDotian: a versatile toolkit for identification of intragenic repeat sequences. Molecular Horticulture 4:37

doi: 10.1186/s43897-024-00113-3
[47]

Ahmad A, Niwa Y, Goto S, Ogawa T, Shimizu M, et al. 2015. bHLH106 integrates functions of multiple genes through their G-box to confer salt tolerance on Arabidopsis. PLoS One 10:e0126872

doi: 10.1371/journal.pone.0126872
[48]

Zhu JH, Xia DN, Xu J, Guo D, Li HL, et al. 2020. Identification of the bHLH gene family in Dracaena cambodiana reveals candidate genes involved in flavonoid biosynthesis. Industrial Crops and Products 150:112407

doi: 10.1016/j.indcrop.2020.112407
[49]

Paterson AH, Bowers JE, Chapman BA. 2004. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proceedings of the National Academy of Sciences of the United States of America 101:9903−8

doi: 10.1073/pnas.0307901101
[50]

Guan Q, Kong W, Tan B, Zhu W, Akter T, et al. 2024. Multiomics unravels potential molecular switches in the C3 to CAM transition of Mesembryanthemum crystallinum. Journal of Proteomics 299:105145

doi: 10.1016/j.jprot.2024.105145
[51]

Verma D, Jalmi SK, Bhagat PK, Verma N, Sinha AK. 2020. A bHLH transcription factor, MYC2, imparts salt intolerance by regulating proline biosynthesis in Arabidopsis. The FEBS Journal 287:2560−76

doi: 10.1111/febs.15157
[52]

Hao Y, Zong X, Ren P, Qian Y, Fu A. 2021. Basic helix-loop-helix (bHLH) transcription factors regulate a wide range of functions in Arabidopsis. International Journal of Molecular Sciences 22:7152

doi: 10.3390/ijms22137152
[53]

Yu S, Wu J, Sun Y, Zhu H, Sun Q, et al. 2022. A calmodulin-like protein (CML10) interacts with cytosolic enzymes GSTU8 and FBA6 to regulate cold tolerance. Plant physiology 190:1321−33

doi: 10.1093/plphys/kiac311