[1]

Yasiry A, Wang J, Zhang L, Abdulraheem AAA, Cai X, et al. 2024. An experimental study on H2/NH3/CH4-air laminar propagating spherical flames at elevated pressure and oxygen enrichment. International Journal of Hydrogen Energy 58:28−39

doi: 10.1016/j.ijhydene.2024.01.138
[2]

Zhan H, Li S, Yin G, Hu E, Huang Z. 2024. Experimental and kinetic study of ammonia oxidation and NOx emissions at elevated pressures. Combustion and Flame 263:113129

doi: 10.1016/j.combustflame.2023.113129
[3]

Dai H, Wang J, Su S, Su L, Cai X, et al. 2024. Turbulent burning velocity of hydrogen/n-heptane/air propagating spherical flames: Effects of hydrogen content. Combustion and Flame 260:113248

doi: 10.1016/j.combustflame.2023.113248
[4]

Guo J, Li F, Zhang H, Duan Y, Wang S, et al. 2023. Effects of fuel components and combustion parameters on the formation mechanism and emission characteristics of aldehydes from biodiesel combustion. Renewable Energy 219:119474

doi: 10.1016/j.renene.2023.119474
[5]

Zhang Y, Li Y, Liu P, Zhan R, Huang Z, et al. 2019. Investigation on the chemical effects of dimethyl ether and ethanol additions on PAH formation in laminar premixed ethylene flames. Fuel 256:115809

doi: 10.1016/j.fuel.2019.115809
[6]

Li Y, Zhang Y, Zhan R, Huang Z, Lin H. 2021. Experimental and kinetic modeling study of ammonia addition on PAH characteristics in premixed n-heptane flames. Fuel Processing Technology 214:106682

doi: 10.1016/j.fuproc.2020.106682
[7]

Zhang Y, Wang L, Liu P, Guan B, Ni H, et al. 2018. Experimental and kinetic study of the effects of CO2 and H2O addition on PAH formation in laminar premixed C2H4/O2/Ar flames. Combustion and Flame 192:439−51

doi: 10.1016/j.combustflame.2018.01.050
[8]

Wang P, Yan J, Yan T, Ao C, Zhang L, et al. 2024. Kinetic study of H-abstraction and preliminary pyrolysis of n-decane in post-injection fuels. Combustion and Flame 262:113367

doi: 10.1016/j.combustflame.2024.113367
[9]

Williams A, Jones JM, Ma L, Pourkashanian M. 2012. Pollutants from the combustion of solid biomass fuels. Progress in Energy and Combustion Science 38:113−37

doi: 10.1016/j.pecs.2011.10.001
[10]

Ao C, Yan J, Yan T, Zhang L, Wang P. 2024. A theoretical and modeling study of nitrogen chemistry in polycyclic aromatic hydrocarbons growth process. Combustion and Flame 259:113183

doi: 10.1016/j.combustflame.2023.113183
[11]

Chen B, Lyu H, Liu P, Samaras VG, Lu X, et al. 2024. On the formation of pyridine, the first nitrogen heterocyclic ring in NPAHs. Proceedings of the Combustion Institute 40:105675

doi: 10.1016/j.proci.2024.105675
[12]

Yan W, Wang X, Dong J, Liu Y, Liu L, et al. 2024. Role of ammonia addition on the growth of polycyclic aromatic hydrocarbon and coke surface at deep cracking of endothermic hydrocarbon fuels. Chemical Engineering Journal 496:154015

doi: 10.1016/j.cej.2024.154015
[13]

Tang X, Xing J, Luo K, Fan J, Gu M. 2024. Numerical study on soot formation in ammonia/ethylene laminar counterflow diffusion flame. Fuel 371:131965

doi: 10.1016/j.fuel.2024.131965
[14]

Liu P, Chen B, Bennett A, Pitsch H, Roberts WL. 2023. Probing the influence of hydrogen cyanide on PAH chemistry. Proceedings of the Combustion Institute 39:1139−46

doi: 10.1016/j.proci.2022.08.088
[15]

Zhang K, Xu Y, Yu R, Wu H, Liu X, et al. 2024. ReaxFF molecular dynamics study of N-containing PAHs formation in the pyrolysis of C2H4/NH3 mixtures. Combustion and Flame 270:113774

doi: 10.1016/j.combustflame.2024.113774
[16]

van Duin ACT, Dasgupta S, Lorant F, Goddard WA. 2001. ReaxFF: a reactive force field for hydrocarbons. The Journal of Physical Chemistry A 105:9396−409

doi: 10.1021/jp004368u
[17]

Senftle TP, Hong S, Islam MM, Kylasa SB, Zheng Y, et al. 2016. The ReaxFF reactive force-field: development, applications and future directions. NPJ Computational Materials 2:15011

doi: 10.1038/npjcompumats.2015.11
[18]

Zhang P, Wu H, Zhang K, Lv X, Cheng X. 2023. Decoupling effects of C3H3/C4H5/i-C4H5/CN radicals on the formation and growth of aromatics: a ReaxFF molecular dynamics study. Journal of Aerosol Science 171:106185

doi: 10.1016/j.jaerosci.2023.106185
[19]

Page AJ, Moghtaderi B. 2009. Molecular dynamics simulation of the low-temperature partial oxidation of CH4. The Journal of Physical Chemistry A 113:1539−47

doi: 10.1021/jp809576k
[20]

Zhao J, Lin Y, Huang K, Gu M, Lu K, et al. 2020. Study on soot evolution under different hydrogen addition conditions at high temperature by ReaxFF molecular dynamics. Fuel 262:116677

doi: 10.1016/j.fuel.2019.116677
[21]

Han S, Li X, Nie F, Zheng M, Liu X, et al. 2017. Revealing the initial chemistry of soot nanoparticle formation by ReaxFF molecular dynamics simulations. Energy & Fuels 31:8434−44

doi: 10.1021/acs.energyfuels.7b01194
[22]

Hirai H. 2021. Molecular dynamics simulations for initial formation process of polycyclic aromatic hydrocarbons in n-hexane and cyclohexane combustion. Chemical Physics 548:111225

doi: 10.1016/j.chemphys.2021.111225
[23]

BIOVIA. 2010. Dassault Systèmes, Materials Studio. San Diego: Dassault Systèmes. www.3ds.com/products/biovia/materials-studio

[24]

Gao Y, Li Y, Wei X, Zheng Y, Yang S, et al. 2025. A kinetic study of CO2 and H2O addition on NO formation for ammonia-methanol combustion. Fuel 381:133283

doi: 10.1016/j.fuel.2024.133283
[25]

Thompson AP, Aktulga HM, Berger R, Bolintineanu DS, Brown WM, et al. 2022. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Computer Physics Communications 271:108171

doi: 10.1016/j.cpc.2021.108171
[26]

Diao S, Li H, Yu M. 2024. Atomic insights into the combustion mechanism of DME/NH3 mixtures: a combined ReaxFF-MD and DFT study. International Journal of Hydrogen Energy 80:743−53

doi: 10.1016/j.ijhydene.2024.07.189
[27]

Xu Y, Mao Q, Wang Y, Luo KH, Zhou L, et al. 2023. Role of ammonia addition on polycyclic aromatic hydrocarbon growth: a ReaxFF molecular dynamics study. Combustion and Flame 250:112651

doi: 10.1016/j.combustflame.2023.112651
[28]

Zhang P, Zhang K, Cheng X, Liu Y, Wu H. 2022. Analysis of inhibitory mechanisms of ammonia addition on soot formation: a combined ReaxFF MD simulations and experimental study. Energy & Fuels 36:12350−64

doi: 10.1021/acs.energyfuels.2c02206
[29]

Zhu Z, Sui M, Duan Y, Zhang H, Li F, et al. 2025. An experimental and ReaxFF-MD simulation study on effects of ferrocene on combustion characteristics of biodiesel-diesel blends. Energy 329:136745

doi: 10.1016/j.energy.2025.136745
[30]

Sun J, Yang L, Wen D, Curran HJ, Zhou CW. 2024. A theoretical and kinetic study of key reactions between ammonia and fuel molecules, part III: H-atom abstraction from esters by ṄH2 radicals. Combustion and Flame 270:113738

doi: 10.1016/j.combustflame.2024.113738
[31]

Duan Y, Monge-Palacios M, Grajales-Gonzalez E, Han D, Møller KH, et al. 2020. Oxidation kinetics of n-pentanol: a theoretical study of the reactivity of the 1-hydroxy-1-peroxypentyl radical. Combustion and Flame 219:20−32

doi: 10.1016/j.combustflame.2020.05.014
[32]

Zhu Y, Curran HJ, Girhe S, Murakami Y, Pitsch H, et al. 2024. The combustion chemistry of ammonia and ammonia/hydrogen mixtures: a comprehensive chemical kinetic modeling study. Combustion and Flame 260:113239

doi: 10.1016/j.combustflame.2023.113239
[33]

Nayak S, Madhu GS, Rajakumar B. 2025. Thermo-kinetic theoretical studies on the homolytic bond cleavages and H-abstractions of 1-methoxy butan-2-one, a keto-ether fuel additive. Fuel 390:134722

doi: 10.1016/j.fuel.2025.134722
[34]

Girhe S, Snackers A, Lehmann T, Langer R, Loffredo F, et al. 2024. Ammonia and ammonia/hydrogen combustion: comprehensive quantitative assessment of kinetic models and examination of critical parameters. Combustion and Flame 267:113560

doi: 10.1016/j.combustflame.2024.113560
[35]

Bai X, Li Y, Wu J, Liu S, Lu H, et al. 2024. A theoretical kinetic study of 1-butyne, 2-butyne, and 3-methyl-1-butyne combustion. Combustion and Flame 259:113178

doi: 10.1016/j.combustflame.2023.113178
[36]

Wang T, Yalamanchi KK, Bai X, Liu S, Li Y, et al. 2023. Computational thermochemistry of oxygenated polycyclic aromatic hydrocarbons and relevant radicals. Combustion and Flame 247:112484

doi: 10.1016/j.combustflame.2022.112484
[37]

Thorsen LS, Jensen MST, Pullich MS, Christensen JM, Hashemi H, et al. 2023. High pressure oxidation of NH3/n-heptane mixtures. Combustion and Flame 254:112785

doi: 10.1016/j.combustflame.2023.112785
[38]

Sun J, Fu Z, Zhu H, Tao Z, Wen D, et al. 2024. Theoretical kinetic study of key reactions between ammonia and fuel molecules, part I: hydrogen atom abstraction from alkanes by ṄH2 radical. Combustion and Flame 261:113264

doi: 10.1016/j.combustflame.2023.113264
[39]

Shao C, Campuzano F, Zhai Y, Wang H, Zhang W, et al. 2022. Effects of ammonia addition on soot formation in ethylene laminar premixed flames. Combustion and Flame 235:111698

doi: 10.1016/j.combustflame.2021.111698
[40]

Zhang Z, Li A, Li Z, Ren F, Zhu L, et al. 2024. An experimental and kinetic modelling study on the oxidation of NH3, NH3/H2, NH3/CH4 in a variable pressure laminar flow reactor at engine-relevant conditions. Combustion and Flame 265:113513

doi: 10.1016/j.combustflame.2024.113513
[41]

Chen Y, Cheng S, Li L, Li J, Li W, et al. 2025. Ab initio kinetics for H-atom abstraction from nitroethane. Combustion and Flame 274:114033

doi: 10.1016/j.combustflame.2025.114033
[42]

Ren Z, Duan Y, Yang W, Han D. 2024. Theoretical study on hydrogen abstraction reactions from pentane isomers by NO2. Fuel 357:129743

doi: 10.1016/j.fuel.2023.129743
[43]

Glarborg P, Miller JA, Ruscic B, Klippenstein SJ. 2018. Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science 67:31−68

doi: 10.1016/j.pecs.2018.01.002
[44]

Okafor EC, Naito Y, Colson S, Ichikawa A, Kudo T, et al. 2018. Experimental and numerical study of the laminar burning velocity of CH4–NH3–air premixed flames. Combustion and Flame 187:185−98

doi: 10.1016/j.combustflame.2017.09.002
[45]

Ao C, Li Z, Zhang L, Wang P. 2024. Unraveling the impact of acrylonitrile on naphthyl radical during the growth process of polycyclic aromatic hydrocarbons. Journal of the Energy Institute 115:101698

doi: 10.1016/j.joei.2024.101698
[46]

Dai L, Ma W, Wang Q, Maas U, Yu C. 2025. Numerical investigation of the effect of H2 and O2 addition on laminar counterflow flames of ammonia: a comparative study. Fuel 399:135452

doi: 10.1016/j.fuel.2025.135452
[47]

Li Y, Zhang Y, Yang G, Fuentes A, Han D, et al. 2022. A comparative study on PAH characteristics of ethanol and ammonia as fuel additives in a premixed flame. Journal of the Energy Institute 101:56−66

doi: 10.1016/j.joei.2021.12.008
[48]

Zhong W, Dai L, He Z, Wang Q. 2025. Numerical study on the combustion characteristics of premixed ammonia flames with methanol/ethanol/n-butanol addition. Fuel 381:133527

doi: 10.1016/j.fuel.2024.133527