[1]

Hotchkiss RD. 1948. The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. The Journal of Biological Chemistry 175:315−32

doi: 10.1016/S0021-9258(18)57261-6
[2]

Inkster AM, Matthews AM, Phung TN, Plaisier SB, Wilson MA, et al. 2025. Breaking rules: the complex relationship between DNA methylation and X-chromosome inactivation in the human placenta. Biology of Sex Differences 16:18

doi: 10.1186/s13293-025-00696-6
[3]

Xun H, Lian L, Yuan J, Hong J, Hao S, et al. 2025. Domains rearranged methyltransferases (DRMs)-mediated DNA methylation plays key roles in modulating gene expression and maintaining transposable element silencing in soybean. Journal of Integrative Plant Biology 67:1501−14

doi: 10.1111/jipb.13883
[4]

Wang SE, Cheng Y, Lim J, Jang MA, Forrest EN, et al. 2025. Mechanism of EHMT2-mediated genomic imprinting associated with Prader-Willi syndrome. Nature Communications 16:6125

doi: 10.1038/s41467-025-61156-8
[5]

Mizuike J, Suzuki K, Tosaka S, Kuze Y, Kobayashi S, et al. 2025. Rewired chromatin structure and epigenetic gene dysregulation during HTLV-1 infection to leukemogenesis. Cancer Science 116:513−23

doi: 10.1111/cas.16388
[6]

Stefansson OA, Sigurpalsdottir BD, Rognvaldsson S, Halldorsson GH, Juliusson K, et al. 2024. The correlation between CpG methylation and gene expression is driven by sequence variants. Nature Genetics 56:1624−31

doi: 10.1038/s41588-024-01851-2
[7]

Xue Y, Liu L, Zhang Y, He Y, Wang J, et al. 2024. Unraveling the key role of chromatin structure in cancer development through epigenetic landscape characterization of oral cancer. Molecular Cancer 23:190

doi: 10.1186/s12943-024-02100-0
[8]

Okano M, Xie S, Li E. 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genetics 19:219−20

doi: 10.1038/890
[9]

Okano M, Bell DW, Haber DA, Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247−57

doi: 10.1016/S0092-8674(00)81656-6
[10]

Goll MG, Bestor TH. 2005. Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry 74:481−514

doi: 10.1146/annurev.biochem.74.010904.153721
[11]

Wu X, Zhang Y. 2017. TET-mediated active DNA demethylation: mechanism, function and beyond. Nature Reviews Genetics 18:517−34

doi: 10.1038/nrg.2017.33
[12]

Costes V, Chaulot-Talmon A, Sellem E, Perrier JP, Aubert-Frambourg A, et al. 2022. Predicting male fertility from the sperm methylome: application to 120 bulls with hundreds of artificial insemination records. Clinical Epigenetics 14:54

doi: 10.1186/s13148-022-01275-x
[13]

Yang Y, Fan X, Yan J, Chen M, Zhu M, et al. 2021. A comprehensive epigenome atlas reveals DNA methylation regulating skeletal muscle development. Nucleic Acids Research 49:1313−29

doi: 10.1093/nar/gkaa1203
[14]

Luo R, Dai X, Zhang L, Li G, Zheng Z. 2022. Genome-wide DNA methylation patterns of muscle and tail-fat in DairyMeade sheep and Mongolian sheep. Animals 12:1399

doi: 10.3390/ani12111399
[15]

Wu J, Liang W, Liu A, Wang X, Fan Z, et al. 2025. Joint analysis of whole-genome methylation and transcriptome in avian pullorum disease and validation of gene function. BMC Genomics 26:617

doi: 10.1186/s12864-025-11821-5
[16]

Apeksha, Todkari AM, Chaudhary A, Hassan MM, Upreti D, et al. 2025. Decoding DNA methylation in Staphylococcus aureus mastitis: implications for immune regulation and disease resistance. Animal Genetics 56:e70044

doi: 10.1111/age.70044
[17]

Smith J, Sones K, Grace D, MacMillan S, Tarawali S, et al. 2013. Beyond milk, meat, and eggs: role of livestock in food and nutrition security. Animal Frontiers 3:6−13

doi: 10.2527/af.2013-0002
[18]

Hamernik DL. 2019. Farm animals are important biomedical models. Animal Frontiers 9:3−5

doi: 10.1093/af/vfz026
[19]

Jin C, Zhuo Y, Wang J, Zhao Y, Xuan Y, et al. 2018. Methyl donors dietary supplementation to gestating sows diet improves the growth rate of offspring and is associating with changes in expression and DNA methylation of insulin-like growth factor-1 gene. Journal of Animal Physiology and Animal Nutrition 102:1340−50

doi: 10.1111/jpn.12933
[20]

Hu Y, Xu H, Li Z, Zheng X, Jia X, et al. 2013. Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers. PLoS One 8:e56411

doi: 10.1371/journal.pone.0056411
[21]

Estrada-Cortés E, Ortiz W, Rabaglino MB, Block J, Rae O, et al. 2021. Choline acts during preimplantation development of the bovine embryo to program postnatal growth and alter muscle DNA methylation. The FASEB Journal 35:e21926

doi: 10.1096/fj.202100991R
[22]

Wang K, Wang S, Ji X, Chen D, Shen Q, et al. 2023. Epigenome-wide association studies of meat traits in Chinese Yorkshire pigs highlights several DNA methylation loci and genes. Frontiers in Genetics 13:1028711

doi: 10.3389/fgene.2022.1028711
[23]

Afonso J, Jun Shim W, Figueiredo Cardoso T, Bruscadin JJ, Oliveira de Lima A, et al. 2025. Putative epigenetic regulation mechanisms related to production, carcass and beef quality traits in Nelore cattle. Frontiers in Genetics 16:1593444

doi: 10.3389/fgene.2025.1593444
[24]

Zhang M, Yan FB, Li F, Jiang KR, Li DH, et al. 2017. Genome-wide DNA methylation profiles reveal novel candidate genes associated with meat quality at different age stages in hens. Scientific Reports 7:45564

doi: 10.1038/srep45564
[25]

Bouzeraa L, Martin H, Dufour P, Marques JCS, Cerri R, et al. 2025. Epigenetic insights into fertility: involvement of immune cell methylation in dairy cows reproduction. Biology of Reproduction ioaf020

doi: 10.1093/biolre/ioaf020
[26]

Pértille F, Alvarez-Rodriguez M, da Silva AN, Barranco I, Roca J, et al. 2021. Sperm methylome profiling can discern fertility levels in the porcine biomedical model. International Journal of Molecular Sciences 22:2679

doi: 10.3390/ijms22052679
[27]

Han W, Xue Q, Li G, Yin J, Zhang H, et al. 2020. Genome-wide analysis of the role of DNA methylation in inbreeding depression of reproduction in Langshan chicken. Genomics 112:2677−87

doi: 10.1016/j.ygeno.2020.02.007
[28]

Jin L, Mao K, Li J, Huang W, Che T, et al. 2018. Genome-wide profiling of gene expression and DNA methylation provides insight into low-altitude acclimation in Tibetan pigs. Gene 642:522−32

doi: 10.1016/j.gene.2017.11.074
[29]

Zhang Z, Du H, Bai L, Yang C, Li Q, et al. 2018. Whole genome bisulfite sequencing reveals unique adaptations to high-altitude environments in Tibetan chickens. PLoS One 13:e0193597

doi: 10.1371/journal.pone.0193597
[30]

Sevane N, Martínez R, Bruford MW. 2019. Genome-wide differential DNA methylation in tropically adapted Creole cattle and their Iberian ancestors. Animal Genetics 50:15−26

doi: 10.1111/age.12731
[31]

Gómez-Redondo I, Planells B, Cánovas S, Ivanova E, Kelsey G, et al. 2021. Genome-wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline. Clinical Epigenetics 13:27

doi: 10.1186/s13148-021-01003-x
[32]

Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, et al. 2010. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084−96

doi: 10.1016/j.cell.2010.12.008
[33]

Bourc’his D, Bestor TH. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96−99

doi: 10.1038/nature02886
[34]

Kropp J, Carrillo JA, Namous H, Daniels A, Salih SM, et al. 2017. Male fertility status is associated with DNA methylation signatures in sperm and transcriptomic profiles of bovine preimplantation embryos. BMC Genomics 18:280

doi: 10.1186/s12864-017-3673-y
[35]

Khezri A, Narud B, Stenseth EB, Johannisson A, Myromslien FD, et al. 2019. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genomics 20:897

doi: 10.1186/s12864-019-6307-8
[36]

Ivanova E, Canovas S, Garcia-Martínez S, Romar R, Lopes JS, et al. 2020. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Clinical Epigenetics 12:96

doi: 10.1186/s13148-020-00887-5
[37]

Nie X, Liu Q, Wang R, Sheng W, Li X, et al. 2017. DNA demethylation pattern of in-vitro fertilized and cloned porcine pronuclear stage embryos. Clinica Chimica Acta 473:45−50

doi: 10.1016/j.cca.2017.07.025
[38]

Gao Y, Jammes H, Rasmussen MA, Oestrup O, Beaujean N, et al. 2011. Epigenetic regulation of gene expression in porcine epiblast, hypoblast, trophectoderm and epiblast-derived neural progenitor cells. Epigenetics 6:1149−61

doi: 10.4161/epi.6.9.16954
[39]

Lu X, Zhang Y, Wang L, Wang L, Wang H, et al. 2021. Evolutionary epigenomic analyses in mammalian early embryos reveal species-specific innovations and conserved principles of imprinting. Science Advances 7:eabi6178

doi: 10.1126/sciadv.abi6178
[40]

Xia W, Xie W. 2020. Rebooting the epigenomes during mammalian early embryogenesis. Stem Cell Reports 15:1158−75

doi: 10.1016/j.stemcr.2020.09.005
[41]

Gershoni M. 2023. Transgenerational transmission of environmental effects in livestock in the age of global warming. Cell Stress and Chaperones 28:445−54

doi: 10.1007/s12192-023-01325-0
[42]

Braunschweig M, Jagannathan V, Gutzwiller A, Bee G. 2012. Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS One 7:e30583

doi: 10.1371/journal.pone.0030583
[43]

Rosenberg T, Marco A, Kisliouk T, Haron A, Shinder D, et al. 2022. Embryonic heat conditioning in chicks induces transgenerational heat/immunological resilience via methylation on regulatory elements. The FASEB Journal 36:e22406

doi: 10.1096/fj.202101948R
[44]

Laporta J, Khatib H, Zachut M. 2024. Review: phenotypic and molecular evidence of inter- and trans-generational effects of heat stress in livestock mammals and humans. Animal 18:101121

doi: 10.1016/j.animal.2024.101121
[45]

Townsend J, Braz CU, Taylor T, Khatib H. 2023. Effects of paternal methionine supplementation on sperm DNA methylation and embryo transcriptome in sheep. Environmental Epigenetics 9:dvac029

doi: 10.1093/eep/dvac029
[46]

Kizilaslan M, Braz CU, Townsend J, Taylor T, Crenshaw TD, et al. 2025. Transgenerational epigenetic and phenotypic inheritance across five generations in sheep. International Journal of Molecular Sciences 26:6412

doi: 10.3390/ijms26136412
[47]

van Otterdijk SD, Michels KB. 2016. Transgenerational epigenetic inheritance in mammals: how good is the evidence? The FASEB Journal 30:2457−65

doi: 10.1096/fj.201500083
[48]

Heard E, Martienssen RA. 2014. Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95−109

doi: 10.1016/j.cell.2014.02.045
[49]

Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, et al. 2008. Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Molecular Cell 30:755−66

doi: 10.1016/j.molcel.2008.05.007
[50]

Boyes J, Bird A. 1991. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123−34

doi: 10.1016/0092-8674(91)90267-3
[51]

Zhang Z, Tan B, Su J, Xue J, Xiao L, et al. 2025. Preliminary analysis of placental DNA methylation profiles in piglets with extreme birth weight variations. Animals 15:2168

doi: 10.3390/ani15152168
[52]

Karami K, Sabban J, Cerutti C, Devailly G, Foissac S, et al. 2025. Molecular responses of chicken embryos to maternal heat stress through DNA methylation and gene expression: a pilot study. Environmental Epigenetics 11:dvaf009

doi: 10.1093/eep/dvaf009
[53]

Neri F, Rapelli S, Krepelova A, Incarnato D, Parlato C, et al. 2017. Intragenic DNA methylation prevents spurious transcription initiation. Nature 543:72−77

doi: 10.1038/nature21373
[54]

Naftelberg S, Schor IE, Ast G, Kornblihtt AR. 2015. Regulation of alternative splicing through coupling with transcription and chromatin structure. Annual Review of Biochemistry 84:165−98

doi: 10.1146/annurev-biochem-060614-034242
[55]

Xie S, Hagen D, Becker GM, Davenport KM, Shira KA, et al. 2025. Analyzing the relationship of RNA and DNA methylation with gene expression. Genome Biology 26:140

doi: 10.1186/s13059-025-03617-3
[56]

Laine VN, Gossmann TI, Schachtschneider KM, Garroway CJ, Madsen O, et al. 2016. Evolutionary signals of selection on cognition from the great tit genome and methylome. Nature Communications 7:10474

doi: 10.1038/ncomms10474
[57]

Derks MFL, Schachtschneider KM, Madsen O, Schijlen E, Verhoeven KJF, et al. 2016. Gene and transposable element methylation in great tit (Parus major) brain and blood. BMC Genomics 17:332

doi: 10.1186/s12864-016-2653-y
[58]

Yuan X, Chen N, Feng Y, Li N, Pan X, et al. 2023. Single-cell multi-omics profiling reveals key regulatory mechanisms that poise germinal vesicle oocytes for maturation in pigs. Cellular and Molecular Life Sciences 80:222

doi: 10.1007/s00018-023-04873-x
[59]

Benedetti C, Giaccari C, Cecere F, Gansemans Y, Kelsey G, et al. 2025. Single-cell multiomic analysis reveals methylome and transcriptome deviations following oocyte maturation in vitro. Reproduction 170:e250011

doi: 10.1530/REP-25-0011
[60]

Lee CN, Fu H, Cardilla A, Zhou W, Deng Y. 2025. Spatial joint profiling of DNA methylome and transcriptome in tissues. Nature 646:1261−71

doi: 10.1038/s41586-025-09478-x
[61]

Fedoriw A, Mugford J, Magnuson T. 2012. Genomic imprinting and epigenetic control of development. Cold Spring Harbor Perspectives in Biology 4:a008136

doi: 10.1101/cshperspect.a008136
[62]

Wood AJ, Oakey RJ. 2006. Genomic imprinting in mammals: emerging themes and established theories. PLoS Genetics 2:e147

doi: 10.1371/journal.pgen.0020147
[63]

Wu YQ, Zhao H, Li YJ, Khederzadeh S, Wei HJ, et al. 2020. Genome-wide identification of imprinted genes in pigs and their different imprinting status compared with other mammals. Zoological Research 41:721−25

doi: 10.24272/j.issn.2095-8137.2020.072
[64]

Ahn J, Hwang IS, Park MR, Rosa-Velazquez M, Cho IC, et al. 2025. Evolutionary lineage-specific genomic imprinting at the ZNF791 locus. PLoS Genetics 21:e1011532

doi: 10.1371/journal.pgen.1011532
[65]

Koski LB, Sasaki E, Roberts RD, Gibson J, Etches RJ. 2000. Monoalleleic transcription of the insulin-like growth factor-II gene (Igf2) in chick embryos. Molecular Reproduction and Development 56:345−52

doi: 10.1002/1098-2795(200007)56:3<345::AID-MRD3>3.0.CO;2-1
[66]

O’Neill MJ, Ingram RS, Vrana PB, Tilghman SM. 2000. Allelic expression of IGF2 in marsupials and birds. Development Genes and Evolution 210:18−20

doi: 10.1007/PL00008182
[67]

Nolan CM, Killian JK, Petitte JN, Jirtle RL. 2001. Imprint status of M6P/IGF2R and IGF2 in chickens. Development Genes and Evolution 211:179−83

doi: 10.1007/s004270000132
[68]

Yokomine T, Kuroiwa A, Tanaka K, Tsudzuki M, Matsuda Y, et al. 2001. Sequence polymorphisms, allelic expression status and chromosome locations of the chicken /IGF2 and MPR1 genes. Cytogenetics and Cell Genetics 93:109−13

doi: 10.1159/000056960
[69]

Frésard L, Leroux S, Servin B, Gourichon D, Dehais P, et al. 2014. Transcriptome-wide investigation of genomic imprinting in chicken. Nucleic Acids Research 42:3768−82

doi: 10.1093/nar/gkt1390
[70]

Wang Q, Li K, Zhang D, Li J, Xu G, et al. 2015. Next-generation sequencing techniques reveal that genomic imprinting is absent in day-old Gallus gallus domesticus brains. PLoS One 10:e0132345

doi: 10.1371/journal.pone.0132345
[71]

Zhuo Z, Lamont SJ, Abasht B. 2017. RNA-seq analyses identify frequent allele specific expression and no evidence of genomic imprinting in specific embryonic tissues of chicken. Scientific Reports 7:11944

doi: 10.1038/s41598-017-12179-9
[72]

Zou H, Yu D, Du X, Wang J, Chen L, et al. 2019. No imprinted XIST expression in pigs: biallelic XIST expression in early embryos and random X inactivation in placentas. Cellular and Molecular Life Sciences 76:4525−38

doi: 10.1007/s00018-019-03123-3
[73]

Yu B, van Tol HTA, Stout TAE, Roelen BAJ. 2020. Initiation of X chromosome inactivation during bovine embryo development. Cells 9:1016

doi: 10.3390/cells9041016
[74]

Young LE, Fernandes K, McEvoy TG, Butterwith SC, Gutierrez CG, et al. 2001. Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nature Genetics 27:153−54

doi: 10.1038/84769
[75]

Yuan L, Wang A, Yao C, Huang Y, Duan F, et al. 2014. Aberrant expression of Xist in aborted porcine fetuses derived from somatic cell nuclear transfer embryos. International Journal of Molecular Sciences 15:21631−43

doi: 10.3390/ijms151221631
[76]

Su J, Wang Y, Xing X, Liu J, Zhang Y. 2014. Genome-wide analysis of DNA methylation in bovine placentas. BMC Genomics 15:12

doi: 10.1186/1471-2164-15-12
[77]

Balaton BP, Fornes O, Wasserman WW, Brown CJ. 2021. Cross-species examination of X-chromosome inactivation highlights domains of escape from silencing. Epigenetics & Chromatin 14:12

doi: 10.1186/s13072-021-00386-8
[78]

Della Valle F, Reddy P, Aguirre Vazquez A, Izpisua Belmonte JC. 2025. Reactivation of retrotransposable elements is associated with environmental stress and ageing. Nature Reviews Genetics 26:547−58

doi: 10.1038/s41576-025-00829-y
[79]

Ricci M, Peona V, Guichard E, Taccioli C, Boattini A. 2018. Transposable elements activity is positively related to rate of speciation in mammals. Journal of Molecular Evolution 86:303−10

doi: 10.1007/s00239-018-9847-7
[80]

Kojima S, Koyama S, Ka M, Saito Y, Parrish EH, et al. 2023. Mobile element variation contributes to population-specific genome diversification, gene regulation and disease risk. Nature Genetics 55:939−51

doi: 10.1038/s41588-023-01390-2
[81]

Zhao P, Peng C, Fang L, Wang Z, Liu GE. 2023. Taming transposable elements in livestock and poultry: a review of their roles and applications. Genetics Selection Evolution 55:50

doi: 10.1186/s12711-023-00821-2
[82]

Chen C, Wang W, Wang X, Shen D, Wang S, et al. 2019. Retrotransposons evolution and impact on lncRNA and protein coding genes in pigs. Mobile DNA 10:19

doi: 10.1186/s13100-019-0161-8
[83]

Sun L, Fu X, Ma G, Hutchins AP. 2021. Chromatin and epigenetic rearrangements in embryonic stem cell fate transitions. Frontiers in Cell and Developmental Biology 9:637309

doi: 10.3389/fcell.2021.637309
[84]

Yu Y, Zhang H, Tian F, Bacon L, Zhang Y, et al. 2008. Quantitative evaluation of DNA methylation patterns for ALVE and TVB genes in a neoplastic disease susceptible and resistant chicken model. PLoS 3:e1731

doi: 10.1371/journal.pone.0001731
[85]

Fulton JE, Mason AS, Wolc A, Arango J, Settar P, et al. 2021. The impact of endogenous Avian Leukosis Viruses (ALVE) on production traits in elite layer lines. Poultry Science 100:101121

doi: 10.1016/j.psj.2021.101121
[86]

Silveira MM, Vargas LN, Bayão HXS, Schumann NAB, Caetano AR, et al. 2019. DNA methylation of the endogenous retrovirus Fematrin-1 in fetal placenta is associated with survival rate of cloned calves. Placenta 88:52−60

doi: 10.1016/j.placenta.2019.09.012
[87]

Kernaleguen M, Daviaud C, Shen Y, Bonnet E, Renault V, et al. 2018. Whole-genome bisulfite sequencing for the analysis of genome-wide DNA methylation and hydroxymethylation patterns at single-nucleotide resolution. In Epigenome Editing, eds. Jeltsch A, Rots MG. New York, USA: Humana Press. pp. 311−49 doi: 10.1007/978-1-4939-7774-1_18

[88]

Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, et al. 2009. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315−22

doi: 10.1038/nature08514
[89]

Li M, Wu H, Luo Z, Xia Y, Guan J, et al. 2012. An atlas of DNA methylomes in porcine adipose and muscle tissues. Nature Communications 3:850

doi: 10.1038/ncomms1854
[90]

Nakabayashi K, Yamamura M, Haseagawa K, et al. 2023. Reduced Representation Bisulfite Sequencing (RRBS). In: Epigenomics: Methods and Protocols, eds. Hatada I, Horii T. New York, USA: Humana Press. pp. 39−51 doi: 10.1007/978-1-0716-2724-2_3

[91]

Ponsuksili S, Trakooljul N, Basavaraj S, Hadlich F, Murani E, et al. 2019. Epigenome-wide skeletal muscle DNA methylation profiles at the background of distinct metabolic types and ryanodine receptor variation in pigs. BMC Genomics 20:492

doi: 10.1186/s12864-019-5880-1
[92]

Schachtschneider KM, Madsen O, Park C, Rund LA, Groenen MAM, et al. 2015. Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model. BMC Genomics 16:743

doi: 10.1186/s12864-015-1938-x
[93]

Gu H, Smith ZD, Bock C, Boyle P, Gnirke A, et al. 2011. Preparation of reduced representation bisulfite sequencing libraries for genome-scale DNA methylation profiling. Nature Protocols 6:468−81

doi: 10.1038/nprot.2010.190
[94]

Yu P, Ji L, Lee KJ, Yu M, He C, et al. 2016. Subsets of visceral adipose tissue nuclei with distinct levels of 5-hydroxymethylcytosine. PLoS One 11:e0154949

doi: 10.1371/journal.pone.0154949
[95]

Booth MJ, Ost TWB, Beraldi D, Bell NM, Branco MR, et al. 2013. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine. Nature Protocols 8:1841−51

doi: 10.1038/nprot.2013.115
[96]

Skvortsova K, Zotenko E, Luu PL, Gould CM, Nair SS, et al. 2017. Comprehensive evaluation of genome-wide 5-hydroxymethylcytosine profiling approaches in human DNA. Epigenetics & Chromatin 10:16

doi: 10.1186/s13072-017-0123-7
[97]

Li L, Gao Y, Wu Q, Cheng ASL, Yip KY. 2019. New guidelines for DNA methylome studies regarding 5-hydroxymethylcytosine for understanding transcriptional regulation. Genome Research 29:543−53

doi: 10.1101/gr.240036.118
[98]

Zuo T, Tycko B, Liu TM, Lin HL, Huang TH. 2009. Methods in Dna methylation profiling. Epigenomics 1:331−45

doi: 10.2217/epi.09.31
[99]

Raddatz G, Arsenault RJ, Aylward B, Whelan R, Böhl F, et al. 2021. A chicken DNA methylation clock for the prediction of broiler health. Communications Biology 4:76

doi: 10.1038/s42003-020-01608-7
[100]

Zhou Y, Liu S, Hu Y, Fang L, Gao Y, et al. 2020. Comparative whole genome DNA methylation profiling across cattle tissues reveals global and tissue-specific methylation patterns. BMC Biology 18:85

doi: 10.1186/s12915-020-00793-5
[101]

Zhou C, Zhang L, Xu D, Ding H, Zheng S, et al. 2022. MeDIP-seq and RNA-seq analysis during porcine testis development reveals functional DMR at the promoter of LDHC. Genomics 114:110467

doi: 10.1016/j.ygeno.2022.110467
[102]

Kim DY, Lim B, Lim D, Park W, Lee KT, et al. 2022. Integrative methylome and transcriptome analysis of porcine abdominal fat indicates changes in fat metabolism and immune responses during different development. Journal of Animal Science 100:skac302

doi: 10.1093/jas/skac302
[103]

González-Recio O, López-Catalina A, Peiró-Pastor R, Nieto-Valle A, Castro M, et al. 2023. Evaluating the potential of (epi)genotype-by-low pass nanopore sequencing in dairy cattle: a study on direct genomic value and methylation analysis. Journal of Animal Science and Biotechnology 14:98

doi: 10.1186/s40104-023-00896-3
[104]

Huang Z, Xu Z, Bai H, Huang Y, Kang N, et al. 2023. Evolutionary analysis of a complete chicken genome. Proceedings of the National Academy of Sciences 120:e2216641120

doi: 10.1073/pnas.2216641120
[105]

Drag MH, Debes KP, Franck CS, Flethøj M, Lyhne MK, et al. 2023. Nanopore sequencing reveals methylation changes associated with obesity in circulating cell-free DNA from Göttingen Minipigs. Epigenetics 18:2199374

doi: 10.1080/15592294.2023.2199374
[106]

Hayes BJ, Nguyen LT, Forutan M, Engle BN, Lamb HJ, et al. 2021. An epigenetic aging clock for cattle using portable sequencing technology. Frontiers in Genetics 12:760450

doi: 10.3389/fgene.2021.760450
[107]

Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, et al. 2010. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253−57

doi: 10.1038/nature09165
[108]

Melnikov AA, Gartenhaus RB, Levenson AS, Motchoulskaia NA, Levenson VV. 2005. MSRE-PCR for analysis of gene-specific DNA methylation. Nucleic Acids Research 33:e93

doi: 10.1093/nar/gni092
[109]

Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, et al. 2005. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics 37:853−62

doi: 10.1038/ng1598
[110]

Lan X, Adams C, Landers M, Dudas M, Krissinger D, et al. 2011. High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology. PLoS One 6:e22226

doi: 10.1371/journal.pone.0022226
[111]

Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, et al. 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nature Methods 7:461−65

doi: 10.1038/nmeth.1459
[112]

Wenger AM, Peluso P, Rowell WJ, Chang PC, Hall RJ, et al. 2019. Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome. Nature Biotechnology 37:1155−62

doi: 10.1038/s41587-019-0217-9
[113]

Song CX, Clark TA, Lu XY, Kislyuk A, Dai Q, et al. 2012. Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nature Methods 9:75−77

doi: 10.1038/nmeth.1779
[114]

Suzuki Y, Korlach J, Turner SW, Tsukahara T, Taniguchi J, et al. 2016. AgIn: measuring the landscape of CpG methylation of individual repetitive elements. Bioinformatics 32:2911−19

doi: 10.1093/bioinformatics/btw360
[115]

Olivia Tse OY, Jiang P, Cheng SH, Peng W, Shang H, et al. 2021. Genome-wide detection of cytosine methylation by single molecule real-time sequencing. Proceedings of the National Academy of Sciences 118:e2019768118

doi: 10.1073/pnas.2019768118
[116]

Pereira L de M. 2025. Primrose. https://github.com/mattoslmp/primrose (Accessed 11 December 2025)

[117]

Ni P, Nie F, Zhong Z, Xu J, Huang N, et al. 2023. DNA 5-methylcytosine detection and methylation phasing using PacBio circular consensus sequencing. Nature Communications 14:4054

doi: 10.1038/s41467-023-39784-9
[118]

Miga KH, Koren S, Rhie A, Vollger MR, Gershman A, et al. 2020. Telomere-to-telomere assembly of a complete human X chromosome. Nature 585:79−84

doi: 10.1038/s41586-020-2547-7
[119]

Wang X, Sun Z, Qi F, Zhou Z, Du P, et al. 2025. A telomere-to-telomere genome assembly of the cultivated peanut. Molecular Plant 18:5−8

doi: 10.1016/j.molp.2024.12.001
[120]

Chen J, Wang Z, Tan K, Huang W, Shi J, et al. 2023. A complete telomere-to-telomere assembly of the maize genome. Nature Genetics 55:1221−31

doi: 10.1038/s41588-023-01419-6
[121]

Ashari H, Liu LS, Dagong MIA, Cai ZF, Xie GL, et al. 2025. Genome sequencing and assembly of feral chickens in the wild of Sulawesi, Indonesia. Animal Genetics 56:e13497

doi: 10.1111/age.13497
[122]

Zhu F, Yin ZT, Zhao QS, Sun YX, Jie YC, et al. 2023. A chromosome-level genome assembly for the Silkie chicken resolves complete sequences for key chicken metabolic, reproductive, and immunity genes. Communications Biology 6:1233

doi: 10.1038/s42003-023-05619-y
[123]

Niu Y, Fan X, Yang Y, Li J, Lian J, et al. 2024. Haplotype-resolved assembly of a pig genome using single-sperm sequencing. Communications Biology 7:738

doi: 10.1038/s42003-024-06397-x
[124]

Cao C, Miao J, Xie Q, Sun J, Cheng H, et al. 2025. A near telomere-to-telomere genome assembly of the Jinhua pig: enabling more accurate genetic research. GigaScience 14:giaf048

doi: 10.1093/gigascience/giaf048
[125]

Terzian P, Vandecasteele C, Lledo J, Serre RF, Sabban J, et al. 2025. Pig and quail CpG methylation datasets from short and long read sequencing technologies. Scientific Data 12:556

doi: 10.1038/s41597-025-04769-4
[126]

Luo LY, Wu H, Zhao LM, Zhang YH, Huang JH, et al. 2025. Telomere-to-telomere sheep genome assembly identifies variants associated with wool fineness. Nature Genetics 57:218−30

doi: 10.1038/s41588-024-02037-6
[127]

Liu Y, Liu Z, Jiang T, Zang T, Wang Y. 2022. Comparison of the Nanopore and PacBio sequencing technologies for DNA 5-methylcytosine detection. 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6−8 December, 2022. USA: IEEE. pp. 220−25 doi: 10.1109/BIBM55620.2022.9995567

[128]

Halliwell DO, Honig F, Bagby S, Roy S, Murrell A. 2025. Double and single stranded detection of 5-methylcytosine and 5-hydroxymethylcytosine with nanopore sequencing. Communications Biology 8:243

doi: 10.1038/s42003-025-07681-0
[129]

Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, et al. 2017. Detecting DNA cytosine methylation using nanopore sequencing. Nature Methods 14:407−10

doi: 10.1038/nmeth.4184
[130]

Sigurpalsdottir BD, Stefansson OA, Holley G, Beyter D, Zink F, et al. 2024. A comparison of methods for detecting DNA methylation from long-read sequencing of human genomes. Genome Biology 25:69

doi: 10.1186/s13059-024-03207-9
[131]

Yin C, Wang R, Qiao J, Shi H, Duan H, et al. 2024. NanoCon: contrastive learning-based deep hybrid network for nanopore methylation detection. Bioinformatics 40:btae046

doi: 10.1093/bioinformatics/btae046
[132]

Stanojević D, Li Z, Bakić S, Foo R, Šikić M. 2024. Rockfish: A transformer-based model for accurate 5-methylcytosine prediction from nanopore sequencing. Nature Communications 15:5580

doi: 10.1038/s41467-024-49847-0
[133]

Ahsan MU, Gouru A, Chan J, Zhou W, Wang K. 2024. A signal processing and deep learning framework for methylation detection using Oxford Nanopore sequencing. Nature Communications 15:1448

doi: 10.1038/s41467-024-45778-y
[134]

Fu Y, Timp W, Sedlazeck FJ. 2025. Computational analysis of DNA methylation from long-read sequencing. Nature Reviews Genetics 26:620−34

doi: 10.1038/s41576-025-00822-5
[135]

Oxford Nanopore Technologies. 2018. Guppy protocol. https://nanoporetech.com/document/Guppy-protocol (Accessed 11 December 2025)

[136]

Oxford Nanopore Technologies. 2025. Dorado documentation. https://dorado-docs.readthedocs.io/en/latest/ (Accessed 11 December 2025)

[137]

Gamaarachchi H, Lam CW, Jayatilaka G, Samarakoon H, Simpson JT, et al. 2020. GPU accelerated adaptive banded event alignment for rapid comparative nanopore signal analysis. BMC Bioinformatics 21:343

doi: 10.1186/s12859-020-03697-x
[138]

Li D, Zhong C, Sun Y, Kang L, Jiang Y. 2023. Identification of genes involved in chicken follicle selection by ONT sequencing on granulosa cells. Frontiers in Genetics 13:1090603

doi: 10.3389/fgene.2022.1090603
[139]

Sutopo S, Lestari DA, Setiaji A, Bugiwati SRA, Dagong MIA, et al. 2024. Revealing the complete mtDNA genome sequence of Cemani chicken (Gallus gallus) by using Nanopore sequencing analysis. Animal Bioscience 37:1664−72

doi: 10.5713/ab.23.0513
[140]

Müller T, Boileau E, Talyan S, Kehr D, Varadi K, et al. 2021. Updated and enhanced pig cardiac transcriptome based on long-read RNA sequencing and proteomics. Journal of Molecular and Cellular Cardiology 150:23−31

doi: 10.1016/j.yjmcc.2020.10.005
[141]

Shu Z, Wang L, Wang J, Zhang L, Hou X, et al. 2022. Integrative analysis of nanopore and illumina sequencing reveals alternative splicing complexity in pig longissimus dorsi muscle. Frontiers in Genetics 13:877646

doi: 10.3389/fgene.2022.877646
[142]

Liu XS, Wu H, Ji X, Stelzer Y, Wu X, et al. 2016. Editing DNA methylation in the mammalian genome. Cell 167:233−47.e17

doi: 10.1016/j.cell.2016.08.056
[143]

Huang YH, Su J, Lei Y, Brunetti L, Gundry MC, et al. 2017. DNA epigenome editing using CRISPR-Cas SunTag-directed DNMT3A. Genome Biology 18:176

doi: 10.1186/s13059-017-1306-z
[144]

Miyadai R, Hinata S, Amemiya Y, Shigematsu S, Umeyama K, et al. 2025. Epigenome editing-mediated restoration of FBN1 expression by demethylation of CpG island shore in porcine fibroblasts. Biochemistry and Biophysics Reports 42:101973

doi: 10.1016/j.bbrep.2025.101973
[145]

Sapozhnikov DM, Szyf M. 2021. Unraveling the functional role of DNA demethylation at specific promoters by targeted steric blockage of DNA methyltransferase with CRISPR/dCas9. Nature Communications 12:5711

doi: 10.1038/s41467-021-25991-9
[146]

Qian J, Liu SX. 2024. CRISPR/dCas9-Tet1-mediated DNA methylation editing. Bio-Protocol 14:e4976−e4976

doi: 10.21769/bioprotoc.4976
[147]

Zuo Q, Wang Y, Cheng S, Lian C, Tang B, et al. 2016. Site-directed genome knockout in chicken cell line and embryos can use CRISPR/Cas gene editing technology. G3 6:1787−92

doi: 10.1534/g3.116.028803
[148]

Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, et al. 2021. Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell 184:2503−2519.e17

doi: 10.1016/j.cell.2021.03.025
[149]

Lin JC, Van Eenennaam AL. 2021. Electroporation-mediated genome editing of livestock zygotes. Frontiers in Genetics 12:648482

doi: 10.3389/fgene.2021.648482
[150]

Sung CK, Yim H. 2020. CRISPR-mediated promoter de/methylation technologies for gene regulation. Archives of Pharmacal Research 43:705−13

doi: 10.1007/s12272-020-01257-8
[151]

Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V. 2023. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review. Briefings in Bioinformatics 24:bbad131

doi: 10.1093/bib/bbad131
[152]

Argelaguet R, Arnol D, Bredikhin D, Deloro Y, Velten B, et al. 2020. MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data. Genome Biology 21:111

doi: 10.1186/s13059-020-02015-1
[153]

Li G, Fu S, Wang S, Zhu C, Duan B, et al. 2022. A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data. Genome Biology 23:20

doi: 10.1186/s13059-021-02595-6
[154]

Clark SJ, Argelaguet R, Kapourani CA, Stubbs TM, Lee HJ, et al. 2018. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nature Communications 9:781

doi: 10.1038/s41467-018-03149-4
[155]

Zhou J, Chen Q, Braun PR, Perzel Mandell KA, Jaffe AE, et al. 2022. Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders. Proceedings of the National Academy of Sciences 119:e2206069119

doi: 10.1073/pnas.2206069119
[156]

Jurmeister P, Bockmayr M, Seegerer P, Bockmayr T, Treue D, et al. 2019. Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Science Translational Medicine 11:eaaw8513

doi: 10.1126/scitranslmed.aaw8513
[157]

Zhao X, Sui Y, Ruan X, Wang X, He K, et al. 2022. A deep learning model for early risk prediction of heart failure with preserved ejection fraction by DNA methylation profiles combined with clinical features. Clinical Epigenetics 14:11

doi: 10.1186/s13148-022-01232-8
[158]

Hoang DT, Shulman ED, Turakulov R, Abdullaev Z, Singh O, et al. 2024. Prediction of DNA methylation-based tumor types from histopathology in central nervous system tumors with deep learning. Nature Medicine 30:1952−61

doi: 10.1038/s41591-024-02995-8
[159]

Park C, Ha J, Park S. 2020. Prediction of Alzheimer's disease based on deep neural network by integrating gene expression and DNA methylation dataset. Expert Systems with Applications 140:112873

doi: 10.1016/j.eswa.2019.112873
[160]

Levy JJ, Titus AJ, Petersen CL, Chen Y, Salas LA, et al. 2020. MethylNet: an automated and modular deep learning approach for DNA methylation analysis. BMC Bioinformatics 21:108

doi: 10.1186/s12859-020-3443-8
[161]

Maciejewski E, Horvath S, Ernst J. 2025. CMImpute: cross-species and tissue imputation of species-level DNA methylation samples across mammalian species. Genome Biology 26:133

doi: 10.1186/s13059-025-03561-2