[1]

Offermanns S. 2003. G-proteins as transducers in transmembrane signalling. Progress in Biophysics and Molecular Biology 83:101−30

doi: 10.1016/S0079-6107(03)00052-X
[2]

Urano D, Jones AM. 2014. Heterotrimeric G protein-coupled signaling in plants. Annual Review of Plant Biology 65:365−84

doi: 10.1146/annurev-arplant-050213-040133
[3]

Zhong CL, Zhang C, Liu JZ. 2019. Heterotrimeric G protein signaling in plant immunity. Journal of Experimental Botany 70:1109−18

doi: 10.1093/jxb/ery426
[4]

Waltenspühl Y, Ehrenmann J, Klenk C, Plückthun A. 2021. Engineering of challenging G protein-coupled receptors for structure determination and biophysical studies. Molecules 26:1465

doi: 10.3390/molecules26051465
[5]

Pándy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsøe K, et al. 2018. GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Research 46:D440−D446

doi: 10.1093/nar/gkx1109
[6]

Wu V, Yeerna H, Nohata N, Chiou J, Harismendy O, et al. 2019. Illuminating the onco-GPCRome: novel G protein–coupled receptor-driven oncocrine networks and targets for cancer immunotherapy. Journal of Biological Chemistry 294:11062−86

doi: 10.1074/jbc.REV119.005601
[7]

Schöneberg T, Liebscher I. 2021. Mutations in G protein–coupled receptors: mechanisms, pathophysiology and potential therapeutic approaches. Pharmacological Reviews 73:89−119

doi: 10.1124/pharmrev.120.000011
[8]

Kenakin T. 2019. Biased receptor signaling in drug discovery. Pharmacological Reviews 71:267−315

doi: 10.1124/pr.118.016790
[9]

Pandey S. 2019. Heterotrimeric G-protein signaling in plants: conserved and novel mechanisms. Annual Review of Plant Biology 70:213−38

doi: 10.1146/annurev-arplant-050718-100231
[10]

Liang X, Ding P, Lian K, Wang J, Ma M, et al. 2016. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. eLife 5:e13568

doi: 10.7554/eLife.13568
[11]

Masuho I, Kise R, Gainza P, Von Moo E, Li X, et al. 2023. Rules and mechanisms governing G protein coupling selectivity of G protein coupling selectivity of GPCRs. Cell Reports 42:113173

doi: 10.1016/j.celrep.2023.113173
[12]

Zhang M, Chen T, Lu X, Lan X, Chen Z, et al. 2024. G protein-coupled receptors (GPCRs): advances in structures, mechanisms and drug discovery. Signal Transduction and Targeted Therapy 9:88

doi: 10.1038/s41392-024-01803-6
[13]

Urano D, Jones AM. 2013. “Round up the usual suspects”: a comment on nonexistent plant G protein-coupled receptors. Plant Physiology 161:1097−102

doi: 10.1104/pp.112.212324
[14]

Maruta N, Trusov Y, Jones AM, Botella JR. 2021. Heterotrimeric G proteins in plants: canonical and atypical Gα subunits. International Journal of Molecular Sciences 22:11841

doi: 10.3390/ijms222111841
[15]

Josefsson LG, Rask L. 1997. Cloning of a putative G-protein-coupled receptor from Arabidopsis thaliana. European Journal of Biochemistry 249:415−20

doi: 10.1111/j.1432-1033.1997.t01-1-00415.x
[16]

Pandey S, Assmann SM. 2004. The Arabidopsis putative G protein-coupled receptor GCR1 interacts with the G protein α subunit GPA1 and regulates abscisic acid signaling. The Plant Cell 16:1616−32

doi: 10.1105/tpc.020321
[17]

Muhammad Aslam M, Waseem M, Jakada BH, Okal EJ, Lei Z, et al. 2022. Mechanisms of abscisic acid-mediated drought stress responses in plants. International Journal of Molecular Sciences 23:1084

doi: 10.3390/ijms23031084
[18]

Liu S, Anderson PJ, Rajagopal S, Lefkowitz RJ, Rockman HA, et al. 2024. G protein-coupled receptors: a century of research and discovery. Circulation Research 135:174−97

doi: 10.1161/CIRCRESAHA.124.323067
[19]

Chakraborty N, Raghuram N. 2023. Life, death and resurrection of plant GPCRs. Plant Molecular Biology 111:221−32

doi: 10.1007/s11103-022-01323-3
[20]

Lee H. 2024. Trade-off regulation in plant growth and stress responses through the role of heterotrimeric G protein signaling. Plants 13:3239

doi: 10.3390/plants13223239
[21]

Pandey S. 2020. Plant receptor-like kinase signaling through heterotrimeric G-proteins. Journal of Experimental Botany 71:1742−51

doi: 10.1093/jxb/eraa016
[22]

Sharma B, Ganotra J, Biswal B, Sharma K, Gandhi S, et al. 2023. An atypical heterotrimeric Gα and its interactome suggest an extra-large role in overcoming abiotic and biotic stress. Physiology and Molecular Biology of Plants 29:1543−61

doi: 10.1007/s12298-023-01378-6
[23]

Zhang H, Zhang Y, Li Q, Hao F, Stacey G, et al. 2025. Plant PAQR-like sensors activate heterotrimeric G proteins to confer resistance against multiple pathogens. Molecular Plant 18:639−50

doi: 10.1016/j.molp.2025.02.006
[24]

Misra S, Wu Y, Venkataraman G, Sopory SK, Tuteja N. 2007. Heterotrimeric G-protein complex and G-protein-coupled receptor from a legume (Pisum sativum): role in salinity and heat stress and cross-talk with phospholipase C. The Plant Journal 51:656−69

doi: 10.1111/j.1365-313X.2007.03169.x
[25]

Rogato A, Valkov VT, Alves LM, Apone F, Colucci G, et al. 2016. Down-regulated Lotus japonicus GCR1 plants exhibit nodulation signalling pathways alteration. Plant Science 247:71−82

doi: 10.1016/j.plantsci.2016.03.007
[26]

Wei J, Li DX, Zhang JR, Shan C, Rengel Z, et al. 2018. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. Journal of Pineal Research 65:e12500

doi: 10.1111/jpi.12500
[27]

Lu P, Magwanga RO, Kirungu JN, Dong Q, Cai X, et al. 2019. Genome-wide analysis of the cotton G-coupled receptor proteins (GPCR) and functional analysis of GTOM1, a novel cotton GPCR gene under drought and cold stress. BMC Genomics 20:651

doi: 10.1186/s12864-019-5972-y
[28]

Pandey S, Nelson DC, Assmann SM. 2009. Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136−48

doi: 10.1016/j.cell.2008.12.026
[29]

Ma Y, Dai X, Xu Y, Luo W, Zheng X, et al. 2015. COLD1 confers chilling tolerance in rice. Cell 160:1209−21

doi: 10.1016/j.cell.2015.01.046
[30]

Jin YN, Cui ZH, Ma K, Yao JL, Ruan YY, et al. 2021. Characterization of ZmCOLD1, novel GPCR-Type G Protein genes involved in cold stress from Zea mays L. and the evolution analysis with those from other species. Physiology and Molecular Biology of Plants 27:619−32

doi: 10.1007/s12298-021-00966-8
[31]

Zhang X, Zhang Z, Peng H, Wang Z, Li H, et al. 2024. GPCR-like protein ZmCOLD1 regulates plant height in an ABA manner. International Journal of Molecular Sciences 25:11755

doi: 10.3390/ijms252111755
[32]

Dong H, Yan S, Liu J, Liu P, Sun J. 2019. TaCOLD1 defines a new regulator of plant height in bread wheat. Plant Biotechnology Journal 17:687−99

doi: 10.1111/pbi.13008
[33]

Zheng Q, Yu Q, Yao W, Lv K, Zhang N, et al. 2023. Decoding VaCOLD1 function in grapevines: a membrane protein enhancing cold stress tolerance. Journal of Agricultural and Food Chemistry 71:19357−71

doi: 10.1021/acs.jafc.3c05101
[34]

Ramasamy M, Damaj MB, Vargas-Bautista C, Mora V, Liu J, et al. 2021. A sugarcane G-protein-coupled receptor, ShGPCR1, confers tolerance to multiple abiotic stresses. Frontiers in Plant Science 12:745891

doi: 10.3389/fpls.2021.745891
[35]

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, et al. 2020. Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology 62:25−54

doi: 10.1111/jipb.12899
[36]

Kavi Kishor PB, Tiozon RN Jr, Fernie AR, Sreenivasulu N. 2022. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends in Plant Science 27:1283−95

doi: 10.1016/j.tplants.2022.08.013
[37]

Khan N. 2025. Molecular insights into ABA-mediated regulation of stress tolerance and development in plants. International Journal of Molecular Sciences 26:7872

doi: 10.3390/ijms26167872
[38]

Fidler J, Graska J, Gietler M, Nykiel M, Prabucka B, et al. 2022. PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli. Cells 11:1352

doi: 10.3390/cells11081352
[39]

Kou H, Zhang X, Jia J, Xin M, Wang J, et al. 2024. Research progress in the regulation of the ABA signaling pathway by E3 ubiquitin ligases in plants. International Journal of Molecular Sciences 25:7120

doi: 10.3390/ijms25137120
[40]

Ding LN, Li YT, Wu YZ, Li T, Geng R, et al. 2022. Plant disease resistance-related signaling pathways: recent progress and future prospects. International Journal of Molecular Sciences 23:16200

doi: 10.3390/ijms232416200
[41]

Back K. 2021. Melatonin metabolism, signaling and possible roles in plants. The Plant Journal 105:376−91

doi: 10.1111/tpj.14915
[42]

Anunathini P, Manoj VM, Sarath Padmanabhan TS, Dhivya S, Narayan JA, et al. 2019. In silico characterisation and functional validation of chilling tolerant divergence 1 (COLD1) gene in monocots during abiotic stress. Functional Plant Biology 46:524−32

doi: 10.1071/FP18189
[43]

Warpeha KM, Lateef SS, Lapik Y, Anderson M, Lee BS, et al. 2006. G-protein-coupled receptor 1, G-protein Gα-subunit 1, and prephenate dehydratase 1 are required for blue light-induced production of phenylalanine in etiolated Arabidopsis. Plant Physiology 140:844−55

doi: 10.1104/pp.105.071282
[44]

Chakraborty N, Singh N, Kaur K, Raghuram N. 2015. G-protein signaling components GCR1 and GPA1 mediate responses to multiple abiotic stresses in Arabidopsis. Frontiers in Plant Science 6:1000

doi: 10.3389/fpls.2015.01000
[45]

Jin G, Liu F, Ma H, Hao S, Zhao Q, et al. 2012. Two G-protein-coupled-receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones. Biochemical and Biophysical Research Communications 417:991−95

doi: 10.1016/j.bbrc.2011.12.066
[46]

DeFalco TA, Zipfel C. 2021. Molecular mechanisms of early plant pattern-triggered immune signaling. Molecular Cell 81:3449−67

doi: 10.1016/j.molcel.2021.07.029
[47]

Pandey S. 2025. A new class of receptors for plant G-proteins. Molecular Plant 18:925−27

doi: 10.1016/j.molp.2025.04.011
[48]

Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J. 2023. Abiotic stress in crop production. International Journal of Molecular Sciences 24:6603

doi: 10.3390/ijms24076603
[49]

Mehdi F, Cao Z, Zhang S, Gan Y, Cai W, et al. 2024. Factors affecting the production of sugarcane yield and sucrose accumulation: suggested potential biological solutions. Frontiers in Plant Science 15:1374228

doi: 10.3389/fpls.2024.1374228
[50]

Xu D, Tang W, Ma Y, Wang X, Yang Y, et al. 2024. Arabidopsis G-protein β subunit AGB1 represses abscisic acid signaling via attenuation of the MPK3−VIP1 phosphorylation cascade. Journal of Experimental Botany 75:1615−32

doi: 10.1093/jxb/erad464
[51]

Chakraborty N, Kanyuka K, Jaiswal DK, Kumar A, Arora V, et al. 2019. GCR1 and GPA1 coupling regulates nitrate, cell wall, immunity and light responses in Arabidopsis. Scientific Reports 9:5838

doi: 10.1038/s41598-019-42084-2